
MANAGEMENT SCIENCE
Vol. 53, No. 8, August 2007, pp. 1315–1331
issn 0025-1909 �eissn 1526-5501 �07 �5308 �1315

informs ®

doi 10.1287/mnsc.1060.0687
©2007 INFORMS

Learning from Experience in Software
Development: A Multilevel Analysis

Wai Fong Boh
Nanyang Business School, Nanyang Technological University, Singapore 639798,

Republic of Singapore, awfboh@ntu.edu.sg

Sandra A. Slaughter
David A. Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,

sandras@andrew.cmu.edu

J. Alberto Espinosa
Kogod School of Business, American University, Washington, District of Columbia 20016-8044,

alberto@american.edu

This study examines whether individuals, groups, and organizational units learn from experience in soft-
ware development and whether this learning improves productivity. Although prior research has found the

existence of learning curves in manufacturing and service industries, it is not clear whether learning curves
also apply to knowledge work like software development. We evaluate the relative productivity impacts from
accumulating specialized experience in a system, diversified experience in related and unrelated systems, and
experience from working with others on modification requests (MRs) in a telecommunications firm, which
uses an incremental software development methodology. Using multilevel modeling, we analyze extensive data
archives covering more than 14 years of systems development work on a major telecommunications product
dating from the beginning of its development process. Our findings reveal that the relative importance of the
different types of experience differs across levels of analysis. Specialized experience has the greatest impact on
productivity for MRs completed by individual developers, whereas diverse experience in related systems plays
a larger role in improving productivity for MRs and system releases completed by groups and organizational
units. Diverse experience in unrelated systems has the least influence on productivity at all three levels of anal-
ysis. Our findings support the existence of learning curves in software development and provide insights into
when specialized or diverse experience may be more valuable.

Key words : software development; knowledge work; knowledge workers; organizational learning; learning
curve; multilevel analysis

History : Accepted by Rajiv Banker, information systems; received July 3, 2003. This paper was with the
authors 10 12 months for 2 revisions. Published online in Articles in Advance July 20, 2007.

1. Introduction
Although software systems are critical to almost every
aspect of modern life, systems development projects
are frequently behind schedule and over budget
(Wastell 1999). It is striking that these problems
have persisted despite automated tools, advances in
programming languages and methods, and formal
education and training in computer science and infor-
mation systems (Brooks 1995). One may argue that
such advances are not sufficient to improve the rate
of successful systems development. Rather, software
projects remain susceptible to failures because organi-
zational members fail to learn from their own experi-
ence (Lyytinen and Robey 1999). Learning is crucial to
the success of systems development (Wastell 1999). A
learning perspective highlights the importance of con-
sidering systems development as a recurring process

and encourages investment in building long-term
capabilities.
In this study, we adopt the learning-curve approach

to investigate the extent to which individuals, groups,
and organizational units engaged in software devel-
opment actually learn from their experience. Further,
we consider what types of experience maximize learn-
ing rates. The organizational learning curve has been
the subject of extensive study in many fields and
several industries (Argote et al. 1990). The basic prin-
ciple underlying the learning curve is that produc-
tion experience creates a growing stock of knowledge
that can be applied to improve the productivity of
the organization (Argote 1999). The learning curve
focuses on examining how organizations learn to
work more efficiently.
Prior research has examined learning curves in

manufacturing (e.g., Argote et al. 1990) and service

1315



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1316 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

industries (e.g., Pisano et al. 2001, Reagans et al. 2005).
As industrial organizations become knowledge-based
organizations, it is important to examine whether the
advantages of experience evident in manufacturing
tasks can be achieved in knowledge work. The learn-
ing curve assumes that as a worker performs a task
repeatedly (such as in manufacturing and assembly
operations, or in the making of pizzas (Darr et al.
1995)), the direct labor requirements to complete a
subsequent unit of the task decline. Unlike manu-
facturing tasks, which are often repetitive (Argote
1999), or service work, which is frequently scripted,
knowledge work entails less routinization and often
requires problem solving. Compared to more unstruc-
tured forms of knowledge work like research or
design, however, systems development is more rou-
tine and structured, as it makes use of methodolo-
gies and rules. Nevertheless, systems development is
a knowledge-intensive activity that requires a con-
siderable amount of abstract, technical, theoretical,
and experiential knowledge (Sacks 1994). Although
each systems development project is different and
customized to the requirements of users (Basili and
Caldiera 1995), developers can gain practice with each
project and can construct intellectual schemas based
on their technical and experiential understanding of
software development tasks (Sacks 1994). Thus, there
is some potential for experience-based learning in
software development, although the extent of that
learning is unknown.
Our study contributes to the software development

literature by determining how learning from expe-
rience affects software development productivity for
individuals, groups, and organizational units. It is im-
portant to understand the role that experience plays
in software development because the largest compo-
nent of software costs is for labor, i.e., the developers.
Thus, insights into the productivity impacts of expe-
rience-based learning in software development have
implications for how much managers should value
the experience of software developers, and the extent
to which managers should factor in the learning curve
in project planning.
Our study also contributes to the learning-curve lit-

erature by examining learning at multiple levels of
analysis. Learning from prior experience can occur at
different levels of analysis within a software devel-
opment organization. Although learning curves have
been found to exist at the individual, group, organiza-
tional, and industry levels of analysis (Argote 1999),
prior studies have not considered learning at several
levels of analysis simultaneously. It is important to
make this consideration because many organizational
activities inherently involve multiple levels of analy-
sis (Hofmann 1997). Further, learning processes can
differ across levels (Crossan et al. 1999), and the types

of experience and their impacts on productivity can
also differ at different levels.
Finally, our study contributes to the organizational

learning literature by examining which kinds of ex-
perience best facilitate the learning of individuals,
groups, and organizational units. In particular, we
investigate if developers maximize their learning by
specializing in a specific system, or by diversify-
ing their experience through working on other re-
lated and unrelated systems. Accumulating special-
ized experience creates reliability in experience, thus
enabling organizations to exploit their experience,
whereas diversifying experience creates variety in
experience, thus enabling organizations to engage
in exploration (Holmqvist 2004, March 1991). Explo-
ration and exploitation are both essential processes for
organizations, but they compete for scarce resources
(Gupta et al. 2006). We thus explore the exploitation
versus exploration trade-offs by examining whether
individual experience can best be leveraged through
specialization or diversification. In §2, we describe
the research setting—a large systems development
effort at a telecommunications firm. Then in §3, we
develop hypotheses that posit learning from experi-
ence in systems development at the three levels of
analysis: individual, group, and organizational unit.
Sections 4 and 5 describe the empirical evaluation of
our hypotheses and the analysis of data collected in
the field study. In §§6 and 7 we present and discuss
the results.

2. The Research Context
To examine learning at the individual, group, and
organizational-unit levels within a software organi-
zation, we conducted a field study of an organiza-
tion performing large-scale systems development in
the telecommunications industry. We focused on a
key telecommunications software telephony product
developed by the organization. The product contains
several million lines of code (written in the C pro-
gramming language) with over half a million updates
that have added new features or modified existing
features. The product includes 63 major systems and
26 smaller systems. Each system was developed by a
separate organizational unit that varied in size from
30 to about 300 employees. Organizational units were
located at different sites and effectively functioned
like subsidiaries of the company. Within each orga-
nizational unit, developers worked as individuals or
in groups. Developers were sometimes rotated across
several systems so that the organization could cater
to fluctuating demands for resources in different sys-
tems. Hence, many developers had experience work-
ing on more than one system.
Given the size and complexity of the product, the

organization used an incremental software develop-
ment process, which is commonly used in many large-



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1317

scale development efforts to progressively develop,
evolve, and enhance systems over time (Rajlich 2006).
In an incremental process, a release is a major prod-
uct upgrade that affects one or more systems, and
includes new software features and modifications to
existing features. Different releases are introduced to
the market at different times. To manage this incre-
mental development process, the organization used
modification requests (MRs), which are similar in con-
cept to work orders. The initial development of the
first release of the product was completed as a series
of MRs. Subsequently, MRs were used to add new
functions or modify and repair an existing function. A
set of MRs representing a significant improvement to
the software then makes up a new release of the soft-
ware. All MRs were formally reviewed by a change
committee before being approved and assigned to in-
dividuals or groups.

3. Theory and Hypotheses
In completing a release, work and learning can occur
at multiple levels in the organization, thus allowing
us to differentiate between three levels of analysis.
At the individual level, developers complete individ-
ual development tasks. At the group level, teams of
developers complete tasks that are interdependent. At
the organizational-unit level, tasks performed by indi-
vidual developers and groups of developers in the
organizational unit complete the requirements for a
release. In this section we develop hypotheses about
how different types of experience influence productiv-
ity at the individual, group, and organizational-unit
levels of analysis in systems development.

3.1. Learning from Individual Experience
Knowledge and skills are not only important inputs
for software development work, but are also impor-
tant outputs, because they are continuously enhanced
with experience. Designing, coding, and testing of
software are complex and difficult cognitive tasks that
build on practical experience. As individuals accumu-
late experience by completing more units of work,
they become more proficient in software develop-
ment. We identify three types of cumulative expe-
rience acquired by individuals that are expected to
affect productivity at the individual, group, and orga-
nizational levels of analysis: (1) Experience in a spe-
cific system; (2) experience in related systems; and
(3) experience in unrelated systems.
Experience in a Specific System. In systems devel-

opment, specialization refers to the accumulation of
experience about a specific system. Specialized expe-
rience with a particular system increases develop-
ers’ familiarity with the architectural domain of the
system (Banker et al. 1998), including the structure
of the components, files, and code within the sys-
tem, and the linkages between them (Robillard 1999).

In incremental systems development where new code
has to be integrated with existing code, understand-
ing the given component and its interrelations with
other parts of the system is particularly important
(Rajlich 2006). Developers spend a significant amount
of time comprehending the source code of the sys-
tem being changed or enhanced. Developers’ existing
knowledge of the structures of the files and compo-
nents in specific systems will thus afford them with
much greater efficiency in comprehending those sys-
tems and in updating, enhancing, and adding new
components to the systems (Ramanujan et al. 2000).
Experience in Related and Unrelated Systems. Prior re-

search in psychology has found that individuals can
spontaneously develop a new understanding of a
problem because they transfer knowledge from one
domain to another: What was well understood in
one problem domain suddenly provides an analo-
gous solution to a new problem domain (Schilling
et al. 2003). This transfer of knowledge may occur
across domains that appear to have little in common
(Simonton 1999). In systems development, developers
can increase the diversity of their experience by work-
ing on a variety of related and unrelated systems. We
expect developers to be able to transfer and apply the
experience gained from developing one system to the
development of other systems.
A key question affecting learning from experience

is whether more leverage can be gained by special-
izing, where individuals focus on one kind of task,
or by diversifying, where individuals switch between
multiple kinds of tasks. Specialization allows individ-
uals to complete more repetitions of a task within
a given time, and to gain an in-depth understand-
ing of the problem domain. An individual switching
between multiple kinds of tasks—even if the tasks
are related—might become distracted from learning
concepts that apply only to the core task (Schilling
et al. 2003). In contrast, diverse experience allows
individuals to gain breadth of knowledge, which can
increase their absorptive capacity, as varied prior
learning improves individuals’ ability to evaluate
and utilize outside knowledge (Cohen and Levinthal
1990). Although developers can potentially learn
from both specialized experience in one system and
diverse experience in related and unrelated systems,
they have limited time. Hence, there are trade-offs
involved in deciding whether they should accumu-
late more experience in specific systems, or whether
they should be working on a variety of related and
unrelated systems (Gupta et al. 2006). Despite the
importance of understanding the implications of this
trade-off, the impact of specialization on organiza-
tional learning has received scant theoretical or empir-
ical attention (except for Schilling et al. 2003). In the



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1318 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

following sections, we develop hypotheses to under-
stand the relative importance of each type of individ-
ual cumulative experience in facilitating productivity,
and explore whether the relative importance differs at
the individual, group, and organizational-unit levels
of analysis.

3.1.1. Learning at the Individual Level of Anal-
ysis. Research in psychology has found that learning
across tasks can contain two aspects: the knowledge
content transfer (e.g., knowledge about the code and
architecture of a system) and the learning process
transfer (“learning to learn”) (Schilling et al. 2003,
p. 42). Learning to learn is the process by which
individuals improve their ability to learn over time
because they transfer their previous learning about
how to apply particular kinds of information to a new
problem (Ellis 1965, Schilling et al. 2003). As develop-
ers accumulate experience within a system, they can
transfer both knowledge content and learning pro-
cesses. We expect developers to gain the most lever-
age from specializing in one system as increasing
familiarity with the code and architecture in the sys-
tem has a direct impact on their ability to understand,
enhance, and modify the code (knowledge-content
transfer). Although diverse experience in related and
unrelated systems can improve the breadth of devel-
opers’ knowledge, the effect is expected to be less sig-
nificant, as diverse experience in other systems may
not directly apply to the current system and would
require effort to adapt to the current system. Thus:

Hypothesis 1A (H1A). Developers’ current produc-
tivity in completing individual work is more positively af-
fected by their prior experience in the same system than
by their prior experience in related or unrelated systems.

Studies of individual learning in psychology have
demonstrated that related task variation (varying task
content or context) may enhance an individual’s abil-
ity to learn by facilitating the development of abstract
principles that can be applied to different, but related,
problems (Schilling et al. 2003, Schmidt 1975). For
example, engineers often need to explore a problem
in several different settings (such as in both the plant
and the laboratory) before they are able to under-
stand and resolve it (Schilling et al. 2003, Tyre and
von Hippel 1997). Similarly, in software development,
experience in related systems can allow developers to
abstract an overall cognitive structure and schema of
the dependencies and linkages between related sys-
tems. Individuals’ understanding of the code, struc-
ture, and impact of changing the code in the cur-
rent system can thus be reinforced and improved.
Developers also learn to learn by improving their
understanding of general approaches to problem solv-
ing, general principles about programming, and the
effective usage of organizational software processes
and tools. Encountering similar problems in related

systems may allow developers to better abstract the
general principles about programming and problem
solving. Prior work on related systems may also help
developers to better anticipate and avoid problems in
making changes to the current system.
When developers gain experience working on unre-

lated systems the extent of knowledge-content trans-
fer is small, and the extent of learning-process transfer
is also expected to be limited, as the systems may be
so different that it becomes difficult for developers to
see the parallels with the current system.

Hypothesis 1B (H1B). Developers’ current productiv-
ity in completing individual work is more positively
affected by their prior experience in related systems than
by their prior experience in unrelated systems.

3.1.2. Learning at the Group Level of Analysis.
One key difference between working individually and
working in a group is the need for sharing and inte-
grating knowledge across group members (Brooks
1995, Crossan et al. 1999). When software develop-
ers work in groups, we expect individual specialized
experience to positively influence group productiv-
ity, just as it would influence individuals’ productiv-
ity when developers work alone. However, due to
the need for coordinating, sharing, and integrating
knowledge in a group (Crossan et al. 1999), we expect
individual diverse experience to have a more signifi-
cant positive impact on group productivity than spe-
cialized experience. This is because individual diverse
experience is likely to improve knowledge sharing
and integration within the group.
There has been extensive research examining the ef-

fect of group-member diversity on information shar-
ing and group performance (Mannix and Neale 2005).
Few researchers, however, have conceptualized diver-
sity as the extent to which individuals in groups
are narrow specialists with experience in a limited
number of areas, or broad generalists with experi-
ence in several areas (Bunderson and Sutcliffe 2002).
Bunderson and Sutcliffe (2002) was one exception,
and they found that the functional diversity of indi-
viduals in teams had a significantly positive effect
on information sharing and team performance. Build-
ing on Bunderson and Sutcliffe’s (2002) research, our
study thus explores the relative impact of individual
specialized and diverse experiences on group produc-
tivity in the software development context.
In a software development group, when individu-

als have experience in a diverse set of systems, they
are more likely to have a common understanding of
the overall architecture of the product, and linkages
between systems. Individuals are also exposed to cod-
ing and development practices used in different sys-
tems. This enables them to understand and appreciate



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1319

different development practices and coding styles ad-
opted by other developers, and reduce their biases as
to whether there was one right way of doing things.
Hence, diversity of individual experiences improves
the willingness of group members to share informa-
tion and the ability of other group members to rec-
ognize the relevance and importance of information
shared by others in the group. This facilitates informa-
tion sharing and coordination in the group (Bunder-
son and Sutcliffe 2002, Rulke and Galaskiewicz 2000).
In addition, groups whose members have diverse
experience are better at integrating new and diverse
information to arrive at a more effective solution for
their problem on hand (Brown and Eisenhardt 1995).
The more individuals store objects, patterns, and con-
cepts in their memory, the more they are able to
acquire new information and use information in new
settings (Bunderson and Sutcliffe 2002). In software
development groups, diversity of group members’
individual experience will help the groups better rec-
oncile and recombine differences in opinion, and gen-
erate the design, code, or debugging solution for new
or existing programs more efficiently.

Hypothesis 2 (H2). A software group’s current pro-
ductivity in completing group work on a system is more
positively affected by the average level of group members’
prior experience from work on related and unrelated sys-
tems than from work on the same system.

3.1.3. Learning at the Organizational-Unit Level
of Analysis. At the organizational-unit level of anal-
ysis, we consider the productivity of the unit respon-
sible for completing system releases. A system release
can only be completed with the combined efforts of
all individuals and groups in the unit working on
the system; hence, the completion of system releases
reflects the ability of the entire organizational unit
to work efficiently. To complete a system release, the
experience accumulated by individuals and groups
involved in the system release must be integrated.
Managers have to determine whether they gain more
leverage from allocating developers in the unit to the
same system to accumulate specialized experience,
or from allocating developers to work on a variety
of systems to increase their diversity of experience.
In making these decisions, managers have to balance
between the need for exploitation versus exploration.
Allocating developers to gain specialized experience

within a particular system creates reliability in ex-
perience, allowing organizations to exploit the expe-
rience and increase individual productivity. However,
it can also lead to a competency trap (Levitt and
March 1988). As noted by Garud and Kumaraswamy
(2005, p. 11), “in the very act of refining existing
knowledge � � � � employees may forgo opportunities to
renew and expand their knowledge tool kit.” Gaining

diverse experience, on the other hand, might enhance
the future learning rate of the organizational unit
(Schilling et al. 2003), as individuals with greater
breadth of knowledge are more likely to recognize
the value of new information and to assimilate it.
Fichman and Kemerer (1997), for example, found
that software organizations with more diverse techni-
cal knowledge have greater absorptive capacity and
can assimilate new process innovations more readily.
Having a greater breadth of knowledge will enable
individuals to acquire and use knowledge more effec-
tively, as prior related knowledge facilitates the assim-
ilation of new knowledge (Matusik and Heeley 2005).
This prevents developers from becoming too narrow
minded, allows them to be more flexible in their
approaches to software development, and facilitates
their adaptation to the requirements and workings of
different groups. Having a pool of developers with
a greater breadth of knowledge therefore increases
the flexibility of the organization to assign developers
to work on different systems based on the differing
needs of the organizational units. This allows each
organizational unit to utilize its resources more effec-
tively to complete system releases more efficiently.

Hypothesis 3 (H3). An organizational unit’s current
productivity in completing a system release is more posi-
tively affected by the average experience of the unit’s devel-
opers from work on prior releases of related or unrelated
systems than from work on prior releases of the same
system.

3.2. Learning from Working with Others
Groups are often used in large-scale systems develop-
ment because of the size and complexity of the tasks.
Within a group formed to complete an MR, individual
developers work together in the task. As requests for
new MRs emerge, different configurations of devel-
opment groups are assigned to the MRs, due to dif-
ferent task-expertise requirements. Each development
group is thus a temporary group (Meyerson et al.
1996), consisting of a set of developers working jointly
on a task over a limited time period. The need to
work with other developers presents both opportu-
nities and challenges to learning at the individual,
group, and organizational-unit levels of analysis.

3.2.1. Learning at Individual Level of Analysis.
Individuals can benefit from knowledge accumu-
lated by others (Reagans et al. 2005). This can occur
through processes of knowledge transfer as devel-
opers work with others. Working with others gives
individuals the opportunity to learn through obser-
vations and discussions about the task. In particular,
the opportunity to work with many different devel-
opers will expose individual developers to diverse
practices and insights, enabling them to benefit from



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1320 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

others’ experience. However, not all developers will
work with many others. One of the main principles
of human communication, called selective exposure,
is the strong tendency for individuals to communi-
cate with others who are most like themselves or
who are most likely to agree with them. Individu-
als who interact selectively with a few similar others
avoid messages and information that might conflict
with their established practices and dispositions (Katz
1982). In contrast, individuals who work with many
different developers have more opportunities to learn
from others and share knowledge more extensively,
thereby improving their productivity.

Hypothesis 4A (H4A). Developers’ current produc-
tivity in completing individual work on a system is pos-
itively related to the number of different developers they
have worked with in prior MRs.

3.2.2. Learning at the Group Level of Analysis.
Effective coordination is important when developers
work in teams. The need for coordination is exac-
erbated in large-scale software development, where
dependencies abound among individuals (Kraut and
Streeter 1995). Expertise coordination and group cog-
nition have been found to have significant impact
on group productivity (Espinosa 2002, Faraj and
Sproull 2000). As collaborators interact over time, they
develop common knowledge about tasks, goals, and
strategies that facilitate their work, which helps them
to manage tasks and member dependencies more
effectively. As some or all of the developers within
a group work together in prior MRs, their interac-
tions in the past help them to develop familiarity with
one another, learn about who is good at doing what
(Liang et al. 1995, Wegner 1986), and learn to coordi-
nate with one another. For example, software groups
can organize their work in such a way that the struc-
ture of the work accommodates the strengths and
weaknesses of the members. This requires knowledge
about who is good at doing what in the team—built
through individuals’ prior experience in working
with one another (Liang et al. 1995, Wegner 1986). A
recent study by Reagans et al. (2005) found that prior
experience in working together increases the produc-
tivity of hospital teams. Hence, we expect that the
greater the extent of shared prior experience among
some or all members of the software team, the more
the team members should have learned about work-
ing together, and the better their productivity.

Hypothesis 4B (4B). A software group’s current pro-
ductivity in completing group work on a system is posi-
tively related to the average level of group members’ shared
experience from prior work with one another.

3.2.3. Learning at the Organizational-Unit Level
of Analysis. A prior history of working together on
the same-system release will help developers in the
organizational unit to build a shared understanding
of the system, and a shared coding scheme that
enhances the transfer and communication of knowl-
edge (Zander and Kogut 1995). Having a shared
coding scheme—in the form of codes, symbols, anec-
dotes, and rules about appropriate statements (Weber
and Camerer 2003)—enables effective communication
to take place between individuals in the same organi-
zational unit. This shared experience will help devel-
opers in the unit to work together and coordinate
with one another more efficiently, thus enabling them
to become more productive in completing system
releases.

Hypothesis 4C (H4C). An organizational unit’s cur-
rent productivity in completing a system release is posi-
tively related to the average shared experience of the unit’s
developers from working together on prior system releases.

4. Data and Methods
To evaluate our hypotheses, we analyzed an exten-
sive archival data set covering more than 14 years of
systems development work on a large product pro-
duced by the telecommunications company, dating
from the beginning of its development process. In
order to examine whether learning is occurring, it is
imperative to have data about the product from the
beginning of its development process, data about the
characteristics of each unit of work completed, and
data collected over a sufficiently long period such that
learning can occur and can be exhibited (Argote 1999).
The archival data set in this study meets all of these
requirements and is thus particularly well suited to
the examination of learning curves. The data were
extracted from the version control and change man-
agement systems used by the organization to archive
past versions of the product’s source code. These sys-
tems capture a great deal of contextual information
about each change made to the source code, about
the contributions of each individual (who worked
together with whom on which MRs), and about the
complexity and size of the systems in the product.

4.1. Modification Requests (MRs) as the
Unit of Analysis

The conventional form of the learning curve can be
expressed as yt = ae�tK	

t x
−�
t−1, where yt is the cost per

unit to produce the xth unit in month t, a is the cost of
producing the first unit, K represents inputs such as
capital and labor, � captures an exponential trend in
output not explained by changes in the given inputs
(often the control variables that are not part of the
production function, such as time), xt−1 is the cumu-
lative number of units produced as of month t − 1,



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1321

and � is a parameter measuring the rate at which
costs are reduced as cumulative output increases. The
unit of analysis in the conventional form of the learn-
ing curve is the time period. The use of MR or system
release as the unit of analysis enables us to incor-
porate independent variables to control for the size,
complexity, and other factors expected to affect the
completion of each MR or system release. Therefore
we adopted the approach of Pisano et al. (2001) and
Thornton and Thompson (2001, p. 1351) by analyzing
“unit labor requirements” instead of monthly output
rates. We thus define the MR and system release as
the units in our analysis of individuals and groups,
and organizational units, respectively. We analyzed
data for 549,196 MRs (of which 518,971 are individ-
ual MRs and 30,225 are group MRs) in 2,282 system
releases, completed by 5,123 developers over 14 years.

4.2. Dependent Variable: Software
Development Productivity

Online Appendix A describes all of the variables used
in the analyses. (All of the online appendices are
available in the e-companion.)1

The dependent variable, productivity, is opera-
tionalized as the effort (number of labor hours
in days) to complete the MR or system release.
Unfortunately, our data do not include direct-effort
measures for each MR. It is an onerous task for orga-
nizations to accurately record the effort of develop-
ers at such a fine-grained level. However, the data
indicate on which MRs each developer was work-
ing at any time period. We thus adopted the effort-
computation algorithm developed and validated by
Graves and Mockus (1998), which estimates effort for
each MR based on information available in a version
control system. The effort for a system release is cal-
culated by aggregating the effort for all of the MRs
included in the release.2

4.3. Independent Variables

4.3.1. Prior Experience. We hypothesized that
prior experience working on systems and working
with other developers would affect current produc-
tivity. Consistent with the learning-curve literature,
we measure prior systems experience as the num-
ber of work units, or MRs, completed prior to work
on the current MR.3 This experience measures focus

1 An electronic companion to this paper is available as part of the
online version that can be found at http://mansci.journal.informs.
org/.
2 Online Appendix B describes the details of the effort imputation.
3 These experience measures only capture the experience of devel-
opers accumulated in one organization, and do not include expe-
rience accumulated outside the organization through training or
work in other organizations.

on the learning-by-doing experience gained on the
job, which occurs via the completion of work units.
We distinguish between same-system experience, related-
systems experience, and unrelated-systems experience in
terms of the number of MRs completed on the
same system, related systems, and unrelated sys-
tems, respectively, prior to the current MR. Evolv-
ing software tends to get more complex with each
update, especially in large systems development
efforts (Rajlich 2006). Due to the complexity of the
product, there are associations between systems be-
cause of their shared responsibility in supporting new
and existing features and functionalities (e.g., through
sharing of common data). Thus, changes to a partic-
ular feature could affect more than one system, and
the systems need to work together although each has
been developed independently. For example, one sys-
tem supports customer billing whereas another sup-
ports call recording. To implement a new feature that
allows different calls to be charged at different rates,
both systems are affected because they share com-
mon data that must be updated with the new feature.
These two systems are therefore functionally more
related to each other than to a system that handles
packet-routing algorithms. We identify systems that
are functionally related by examining the requests for
adding new features or for making changes to exist-
ing features. If a request results in changes that affect
two systems, then the two systems are functionally
related as they likely share data or methods that need
to be changed or added based on the request. We thus
consider two systems to be related if they have at
least the system-average number of requests impact-
ing them both.4

Prior experience working with other developers is mea-
sured as the number of distinct developers with
whom an individual has worked prior to the current
MR.5 We measured the average shared experience vari-
ables as the number of MRs (or system releases) com-
pleted by both members of each dyad in the group
MR (or system release) across all systems, averaged
across all dyads in the group (or system release).6

4 We conducted sensitivity analyses to examine how the results
would change if we vary the criteria for defining related systems.
Our results remain unchanged. Online Appendix C provides details
of the analysis.
5 To examine if it makes a difference to account for whether these
other developers are experts or nonexperts, we conducted a sen-
sitivity analysis operationalizing this variable as the number of
different experts that an individual has worked with in the past.
Using this alternative operationalization, however, did not provide
as much explanatory power as the original model.
6 This operationalization assumes that knowledge is relationship
specific, or specific to each dyad (Reagans et al. 2005). An alterna-
tive team-experience measure counting the number of times that
everyone on the team has worked together, “assumes that the team



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1322 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

4.3.2. Control Variables. Consistent with the
learning-curve literature, we define learning to be
the increase in productivity of developers as their
experience increases. However, we need to differen-
tiate between learning from experience and changes
in productivity that may occur due to environmen-
tal changes or technological improvements that are
independent of experience (Argote 1999, Argote et al.
1990, Thornton and Thompson 2001). Hence, we
include a control variable Time at the start of each MR,
which is defined as the number of months from the
start of product development.
It is also important to control for other variables

that could impact productivity. In software develop-
ment, each unit of work differs in its characteristics.
We thus include controls for MR and system-release
characteristics. Based on prior research on software
development, we identified several attributes of MRs
that could impact productivity, including size, com-
plexity, priority, and type. The effort devoted to the
development of each software unit has been shown
to increase with its size (Banker and Slaughter 1997).
The Size of an MR is measured as the lines of code
added, changed, or deleted.7 Software complexity
also affects the productivity of software development
(e.g., Banker et al. 1998). The amount of coupling
between files and components is a key indication of
software complexity (Chidamber and Kemerer 1994).
Tight coupling between software components make
software enhancement more difficult. Any changes
made to one part of the software that affect many
other parts would require more effort to ensure cor-
rectness. Hence, we operationalize MR Complexity as
the number of files that have to be changed to com-
plete an MR (Herbsleb and Mockus 2003).
Priority and the type of work involved are two

other important MR attributes. MR priority is deter-
mined by a change committee in the organization.
There are four levels of MR Priority, coded into an
ordinal scale ranging from 1 to 4: low (1), medium (2),
high (3), and emergency (4). The higher the MR pri-
ority, the more urgent and important the work, and
the more effort may be devoted to it. We also differ-
entiate between new-feature development and feature
maintenance. Maintenance sometimes requires a lot of

is only as experienced as the least experienced pair” (Reagans et al.
2005, p. 877). We thus conducted a sensitivity analysis operational-
izing the average shared experience as the number of times that
everyone on the team has worked together. Using this alternative
operationalization, however, did not provide as high an explana-
tory power as the original operationalization of average shared
experience. These results therefore suggest that in temporary teams,
such as software groups, coordination appears to be relationship
specific, rather than specific to the team as a whole.
7 Modifying a line of code is equivalent to adding a line of code
and deleting a line of code.

effort to understand the code and identify the prob-
lem areas to be rectified, but in the end, may affect
only one line of code. Thus, we include a binary vari-
able New Development, which indicates whether an
MR involves new development (1) or maintenance
work (0).

4.4. Models at Different Levels of Analysis
We evaluate learning at the individual, group, and
organizational-unit levels of analysis. At the individ-
ual level, we examine MRs that have been completed
by only one individual (“individual MRs”); at the
group level, we examine MRs that have been com-
pleted by more than one developer (“group MRs”);
and at the organizational-unit level, we aggregate all
of the MRs completed for a release by the organiza-
tional unit, and use system release as the unit of anal-
ysis. To specify our models at each level, we adopted
the log-linear form of the learning-curve function
(Yelle 1979), and define the effort for completing each
work unit as a function of the MR or system-release
characteristics and the experience variables.

4.4.1. Individual Level of Analysis. For individ-
ual MRs, we specify Equation (1) to test H1A, H1B,
and H4A. The dependent variable is the effort per MR
k in system i completed by individual j .

Ln�Effort Per MRijk�

= 	0j +	1Ln�Sizeijk�+	2Ln�Complexityijk�

+	3New Developmentijk +	4Priorityijk +	5Timeijk

+	6jLn�Individual Same-System Experienceijk�

+	7jLn�Individual Related-Systems Experienceijk�

+	8jLn�Individual Unrelated-Systems Experienceijk�

+	9jLn�Individual Experience
with Other Developersijk�

+	10−97Systemi +uj + �ijk� (1)

To test H1A and H1B, we compared the relative
effects of individual’s prior same-system experience
(	6�, individual’s prior related-systems experience
(	7�, and individual’s prior unrelated-systems experi-
ence (	8� on the effort required to complete the cur-
rent MR. The coefficients, 	6j , 	7j , and 	8j , constitute
the learning indices from which we can derive the
rate at which individuals reduce the effort required
per MR based on their experience gained from prior
work on the same, related, and unrelated systems,
respectively (Yelle 1979). To test H4A, we examined
the impact of the individual’s prior experience work-
ing with other developers on the effort required for
the current MR �	9�.
Our data for the individual MRs have a nested

structure: MRs are nested within individuals, and



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1323

individuals are nested within one or more systems.
We specified the systems as fixed effects, and indi-
viduals as random effects.8 Random effects can be
estimated not only for the intercept but also for the
slopes. Random slope coefficients are appropriate if
the estimated coefficients of the independent vari-
ables differ across units. The literature on individual
learning suggests that not all individuals learn at the
same rate. Thus, we model differences in learning
rates across individuals by estimating random coef-
ficients for each individual for the different types of
experience, allowing individual learning rates 	6j , 	7j ,
	8j , and 	9j to vary across individuals. The model
thus effectively becomes an individual growth model
(Singer 2002).

4.4.2. Group Level of Analysis. For group MRs,
we specify Equation (2) to test H2A, H2B, and H4B.
The dependent variable is the effort per group MR
k in system i.

Ln�Effort Per MRik�

= �0+�1Ln�Sizeik�+�2Ln�Complexityik�

+�3Ln�Number of Developersik�

+�4New Developmentik +�5Priorityik +�6Timeik

+�7Ln�Avg. Group Same-System Experienceik�

+�8Ln�Avg. Group Related-Systems Experienceik�

+�9Ln�Avg. Group Unrelated-Systems Experienceik�

+�10Ln�Avg. Shared Experienceik�

+�11−88Systemi + �ik� (2)

In this analysis, the dependent variable is the effort
required to complete each group MR, or the sum of
the imputed effort expended by all individuals work-
ing on the group MR. To test H2, we compared the
effects of average group same-system experience (or

8 An effect is fixed if the levels in the study represent all possible
levels of the factor about which inference is to be made (Littell et al.
1996). A fixed-effects formulation assumes that differences across
units can be best captured by estimating a different intercept term
for each unit and is appropriate if the units differ in their average
level of the outcome variable. We model systems as fixed effects
because it is likely that systems differ in their average levels of pro-
ductivity. Moreover, modeling the system as random effects would
assume that the system effects are uncorrelated with other regres-
sors (Greene 2003), which seems highly unlikely, as some systems
are bound to be more complex or larger than others. In contrast,
a random-effects formulation assumes that the levels of the factor
used in the study represent a random sample of a larger set of
potential levels (Greene 2003) and that differences across units can
be best captured by estimating a unique error term for each unit.
As we are trying to generalize the learning among individuals in
our sample to other software developers, we define the individual
level as random.

the average number of MRs for the current system
completed by individuals working on the group MR,
prior to its start) to the effects of average group expe-
rience in related and unrelated systems (or the aver-
age number of MRs for related and unrelated systems
completed by individuals working on the group MR,
prior to its start). The coefficients, �7, �8, and �9, con-
stitute the learning indices from which we can derive
the rate at which groups reduce the effort required
per MR based on their experience gained from the
same, related and unrelated systems, respectively. To
test H4B, we examined the effects of average shared
experience or the number of MRs completed by both
members of each dyad included in the group MR
prior to the start of the MR, averaged across all dyads
in the group.
Our data for group MRs also have a nested struc-

ture as group MRs are nested within systems. For
consistency, and for similar considerations as those
for individual MRs, we continue to consider systems
as fixed effects. The control variables for each group
MR are similar to those in the analysis of individual
MRs, except for the inclusion of an additional control
variable—the number of developers involved in each
group MR. As the group size increases, we expect
more effort to be expended on coordination (Espinosa
2002, Kraut and Streeter 1995), thus increasing the
effort required for group MRs.

4.4.3. Organizational-Unit Level of Analysis. For
system releases, we specify Equation (3) to test H3
and H4C. The dependent variable is the effort per
release r for system j :

Ln�Effort Per System Releasejr �

= �0+�1Ln�Sizejr �+�2Ln�Complexityjr �

+�3Ln�% New Group MRsjr �

+�4Ln�% Maintenance Individual MRsjr �

+�5Ln�% Maintenance Group MRsjr �

+�6Ln�Avg. No. of Developers per MRjr �

+�7Ln�Avg. MR Priorityjr �+�8Timejr

+�9Ln�Avg. Unit Same-System Experiencejr �

+�10Ln�Avg. Unit Related-Systems Experiencejr �

+�11Ln�Avg. Unit Unrelated-Systems Experiencejr�

+�12Ln�Avg. Shared Experiencejr �

+�13−79Systemj + �jr � (3)

The dependent variable is defined as the effort re-
quired to complete each release, measured as the
sum of the imputed effort of all MRs included in
the system release. All of the experience variables
are similar to those defined at the group level of



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1324 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

analysis, except that the experience variables are aver-
aged across all the individuals in the organizational
unit working on the current system release. To test
H3, we compared the effects of average unit same-
system experience (or the average number of MRs for
the current system completed by individuals work-
ing on the release, prior to its start) to the effects of
average unit experience in related and unrelated sys-
tems (or the average number of MRs for related and
unrelated systems completed by individuals working
on the current release, prior to its start). The coeffi-
cients, �9��10, and �11, constitute the learning indices
from which we can derive the rate at which the orga-
nizational units reduce the effort required per release
based on the experience gained from the same, related,
and unrelated systems, respectively. To test H4C, we
examined the effects of average shared experience or
the number of system releases which both members
of a dyad involved in the system release had com-
pleted prior to the start of the system release, averaged
across all dyads in the organizational unit completing
the system release.
Our data for the system releases has a nested struc-

ture as each release is nested within a system. We con-
tinue to consider systems as fixed effects for reasons
given earlier. The control variables for each system
release are similar to those for individual and group
MRs. The size of each release refers to the sum of
the size of all MRs in the system release. The release
complexity refers to the average complexity of all the
MRs included in the system release. We also included
a control for the number of developers per MR for
the system release, as this variable provides an indica-
tion of the extent of coordination required in complet-
ing the system release. Average priority refers to the
average priority of all the MRs in the system release.
In addition, we observed that system releases that
tend to have a greater percent of new development
also tend to have a greater percent of group MRs.
This appears to indicate that new-feature develop-
ments tend to require a group of developers to work
on them. Due to this interaction between new devel-
opment and individual versus group MRs, we clas-
sified all MRs into four categories for each release:
(1) new individual MRs; (2) new group MRs; (3) main-
tenance individual MRs; and (4) maintenance group
MRs. Using new individual MRs as the base category,
we included three variables that represent the per-
centage of MRs in each of the three remaining cate-
gories for every system release.

5. Estimation and Results
Due to the nested nature of the data, we estimated
each of our models using multilevel modeling9 (Ang

9 Online Appendix D shows the descriptive statistics and inter-
correlations for variables for all three levels of analysis.

et al. 2002, Bryk and Raudenbush 1992, Hofmann
1997), which allows us to model the fixed and random
effects, and accommodate the nesting of repeated
measures within individuals and systems. Feasible
generalized least squares (FGLS) is used to estimate
the coefficients, and the Newton-Raphson algorithm
(Lindstrom and Bates 1988) is used to derive maxi-
mum likelihood estimates of the variance-covariance
components for the residuals.10 Multilevel model-
ing affords considerable flexibility as the number of
observations per system or per individual may vary,
and the time variable can be continuous rather than
fixed intervals. We conducted a number of specifi-
cation checks for the models, including specifying
the system level as random instead of fixed, and
the individual level as fixed instead of random.
Results are consistent with our original specifications,
although our original specifications yield the best
model fit. To correct for autocorrelation, we speci-
fied first-order autoregressive (AR(1)) as the within-
subject covariance structure for repeated measures
(covariance structure= �2��i−j��.11 We also checked for
multicollinearity,12 and found no evidence of multi-
collinearity problems. Finally, to examine the homo-
geneity of variance assumption, we modeled both
within-subject and between-subject error covariance
structures, and found no evidence of heteroskedastic-
ity problems.13

5.1. Individual Level Results
Table 1 presents the results of the estimation for in-
dividual MRs. We first established that there is sig-
nificant variation in the effort per MR among in-
dividual MRs to be explained by estimating only an

10 We used PROC MIXED in the SAS statistical package (SAS Insti-
tute 2000, Singer 2002) and full maximum likelihood because it
yields log-likelihood numbers that are used to evaluate the incre-
mental fit across nested models. Similar results are obtained using
restricted maximum likelihood (also implemented with a Newton-
Raphson algorithm).
11 We compared the AR(1) within-subject error structure to the
default error structure where repeated observations within subject
are assumed to be independent, and the spatial powers (SP(POW))
error structure for nonequally-spaced time series data. Consistent
results were obtained in all three analyses. The AR(1) error struc-
ture was chosen because it provides the best fit to our data.
12 We repeated our analyses in using ordinary least squares (OLS)
at all three levels of analysis, and found that the highest condition
index was 22.37, and variance inflation factor (VIF) values were
all below 3. We examined the pairwise correlations between the
variables at each level of analysis and found that the correlations
are relatively modest—no higher than 0.55. Robustness checks also
show that there are no multicollinearity problems at all three lev-
els of analysis. Online Appendix E provides more details of the
robustness checks.
13 This approach does not make any strong assumptions about the
nature of the heteroskedasticity (Greene 2003).



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1325

Table 1 Results for Individual MRs (Dependent Variable: Ln Effort Per Individual MR)

Variables Model 1 Model 2 Model 3 Model 4

Intercept (�0� −1�986∗∗∗ �0�001� −1�812∗∗∗ �0�017� −1�891∗∗∗ �0�016� −1�768∗∗∗ �0�019�
Ln Size (�1� 0�050∗∗∗ �0�000� 0�050∗∗∗ �0�000� 0�050∗∗∗ �0�000�
Ln File Complexity (�2� 0�066∗∗∗ �0�001� 0�068∗∗∗ �0�001� 0�068∗∗∗ �0�001�
New Development (�3� −0�267∗∗∗ �0�002� −0�266∗∗∗ �0�002� −0�273∗∗∗ �0�002�
Priority (�4� 0�090∗∗∗ �0�001� 0�091∗∗∗ �0�001� 0�092∗∗∗ �0�001�
Start Month (�5� −0�003∗∗∗ �0�000� −0�002∗∗∗ �0�000� −0�001∗∗∗ �0�000�
Ln Individual Same-System Experience (�6j � −0�034∗∗∗ �0�000� −0�033∗∗∗ �0�001�
Ln Individual Related-Systems Experience (�7j � −0�025∗∗∗ �0�000� −0�026∗∗∗ �0�001�
Ln Individual Unrelated-Systems Experience (�8j � −0�007∗∗∗ �0�000� −0�009∗∗∗ �0�001�
Ln Individual Experience Working with Others (�9j � −0�016∗∗∗ �0�000� −0�013∗∗∗ �0�001�
Deviance (−2 log likelihood) 1,526,729 791,857 763,571 685,662
Within-individual variance 1.1096 1.0723 0.8978 0.5165
Deviance difference (�dev) 734,873 28,286 77,909
Proportion of within-individual variance explained (%) 3.36 19.09 53.45

Notes. (1) ∗p < 0�05; ∗∗p < 0�01; ∗∗∗p < 0�001 for all analyses, and standard errors of beta coefficients are presented in parentheses for
Tables 1, 2, and 3. P -values are based on two-sided t-tests for the significance of the coefficients. (2) Number of observations (no. of
MRs)= 518�971; number of subjects for random effects (no. of individuals)= 5�123; number of systems included in fixed-effects= 89,
degrees of freedom (df) = 510�000 for estimation of coefficients. (3) Within-subject correction for AR(1) error structure included for
Models 2–4. (4) Individual random effects are included for Model 4, and all random effect intercepts and coefficients are allowed to covary
with one another (i.e., the unstructured covariance structure is adopted for the random effects).

intercept term (Model 1 in Table 1).14 Model 2 adds the
control variables, Model 3 adds the experience vari-
ables, and Model 4 allows the individual intercepts
and experience slopes to vary. The proportion of vari-
ance explained from adding each set of determinants
to the models was calculated. We examined the signif-
icance of the incremental variance explained by exam-
ining the differences between the deviance statistics
(�dev) for each pair of nested models. �dev is twice
the negative log likelihood, and has a chi-square dis-
tribution with the difference in number of parameters
between models to be estimated as the degrees of free-
dom. The incremental variances explained by Models
2, 3, and 4 are all significant (p < 0�001).
The results indicate that effort per individual MR

decreases with increasing individual same-system
experience (Equation (1), 	6 = −0�033, p < 0�001),
individual related-systems experience (Equation (1),
	7 = −0�026, p < 0�001), and individual unrelated-
systems experience (Equation (1), 	8 = −0�009, p <
0�001).15 To test H1A and H1B, we compared the
regression coefficients of the same-system, related-

14 Results indicate that there is significant variation in effort per
individual MR to be explained, and that more variation in effort
per MR is between MRs completed by an individual than between
MRs completed by different individuals (57.23% versus 42.77%),
and that most of the variation in effort per MR is between MRs in
a system than between systems (81.17% versus 18.83%).
15 The coefficients suggest that adding one more same-system MR
to a developer’s experience would allow the developer to improve
his or her productivity by 0.290 hours per MR, on average. Adding
one more related-system (unrelated-system) MR to a developer’s
experience would allow the developer to improve his or her pro-
ductivity by 0.232 (0.079) hours per MR, on average.

systems and unrelated-systems experience variables.
We found that specialized experience within a sys-
tem has a greater impact on individual productivity
than diverse experience in related (t = 6�22, p < 0�001)
and unrelated systems (t = 23�16, p < 0�001), provid-
ing support for H1A. Further, experience in related
systems has a greater impact on individual produc-
tivity than experience in unrelated systems (t = 15�67,
p < 0�001), which supports H1B. We also found sup-
port for H4A, that is, the effort per MR decreases as
the number of different developers the individual has
worked with in prior MRs increases (Equation (1),
	9 =−0�013, p < 0�001).
Our estimates for the random effects reflect the abil-

ity of individuals to learn from different types of
experience. The variances of the random-effects coef-
ficients reveal the variability in the initial productivity
(intercepts) and in learning rates (slopes) from differ-
ent types of experience variables (Singer 2002). The
significance of the variance of the random-effects coef-
ficients estimated at the individual level of analysis
implies that developers differ in their initial produc-
tivity, and that they learn at different rates.

5.2. Group Level Results
Table 2 presents the results of the estimation for group
MRs. Similar to the above analysis, we first estab-
lished that there is significant variation in effort per
group MR to be explained in Model 1.16 Models 2 and

16 Results indicate that there is significant variation in effort per
group MR to be explained and that 73.53% of the variance in effort
per group MR is between MRs within a system, whereas 26.47% of
the variance is between systems.



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1326 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

Table 2 Results for Group MRs (Dependent Variable: Ln Effort Per Group MR)

Variables Model 1 Model 2 Model 3

Intercept (�0� 0�194∗∗∗ �0�007� −1�337∗∗∗ �0�043� −1�761∗∗∗ �0�039�
Ln Size (�1� 0�043∗∗∗ �0�001� 0�034∗∗∗ �0�001�
Ln File Complexity (�2� 0�433∗∗∗ �0�003� 0�446∗∗∗ �0�003�
Ln Number of Developers in Group MR ��3� 0�932∗∗∗ �0�014� 1�119∗∗∗ �0�013�
New Development (�4� 0�080∗∗∗ �0�008� 0�106∗∗∗ �0�007�
Priority ��5� −0�043∗∗∗ �0�003� −0�011∗∗∗ �0�003�
Start Month (�6� −0�003∗∗∗ �0�000� −0�001∗∗∗ �0�000�
Ln Average Group Same-System Experience ��7� −0�024∗∗∗ �0�001�
Ln Average Group Related-Systems Experience ��8� −0�034∗∗∗ �0�001�
Ln Average Group Unrelated-Systems Experience ��9� −0�016∗∗∗ �0�001�
Ln Average Shared Group Experience ��10� −0�027∗∗∗ �0�001�
Deviance (−2 log likelihood) 94,847.0 55,286.9 49,802.6
Within-system variance 1.3501 0.3656 0.3047
Deviance difference (�Dev) 39,560 5,484
Proportion of within-system 72.92 77.43
variance explained (%)

Notes. (1) number of observations (no. of group MRs)= 30�225; number of systems included in fixed-effects= 79, df= 30�000. (2)
Within-subject correction for AR(1) error structure included for Models 2 and 3.

3 were estimated to evaluate the proportion of vari-
ance explained from adding the control variables and
the experience variables, respectively. All incremental
variances explained by Models 2 and 3 are significant
(at p < 0�001).
Our results indicate that effort per group MR de-

creases with increasing average same-system expe-
rience (Equation (2), �7 = −0�024, p < 0�001), aver-
age related-systems experience (Equation (2), �8 =
−0�034, p < 0�001), and average unrelated-systems
experience (Equation (2), �9 = −0�016, p < 0�001).17

We tested H2 by comparing the regression coefficients
of the same-system, related-systems and unrelated-
systems experience variables. Our results show that
average group experience in related systems has a
greater impact on group productivity than average
group experience in the same system (t = 6�12, p <
0�001) and average group unrelated-systems experi-
ence (t = 16�68, p < 0�001). Average group experi-
ence in the same system, on the other hand, had
a greater impact on group productivity than aver-
age group unrelated-systems experience (t = 5�70, p <
0�001). Hence, H2 was only partially supported, as the
results show that although related-system experience
had a greater impact on group productivity than same-
system experience, unrelated-system experience had
less impact on group productivity than same system
experience. In addition, we found support for H4B, as
our results indicate that effort per group MR decreases

17 The coefficients suggest that adding one more same-system MR
to a group’s average experience would improve group productivity
by 1.265 hours per group MR. Adding one more related-system MR
to a group’s average experience would improve group productivity
by 1.798 hours per group MR, whereas adding one more unrelated-
system MR to a group’s average experience would only improve
group productivity by 0.833 hours per group MR.

with increasing average shared experience of group
members (Equation (2), �10 =−0�027, p < 0�001).

5.3. Organizational-Unit Level Results
Table 3 presents the results for the estimation of sys-
tem releases. We first established that there is sig-
nificant variation in effort per system release to be
explained.18 Models 2 and 3 were estimated to evalu-
ate the proportion of variance explained from adding
the control and experience variables, respectively. All
incremental variances explained byModels 2 and 3 are
significant (p < 0�001).
Our results suggest that the average same-system

experience (Equation (3), �9 = −0�014, p > 0�10)
and the average unrelated-system experience (Equa-
tion (3), �11 = −0�010, p > 0�10) of individuals in the
organizational unit completing the release has no sig-
nificant effect on the effort per release. The average
related-system experience of developers involved in
completing the release, on the other hand, signifi-
cantly decreases the effort per release (Equation (3),
�10 =−0�053, p < 0�001).19 To test H3, we compared the
regression coefficients of the same-system experience
variable to the related-systems and unrelated-systems
experience variables. Our results show that average

18 Results indicate that there is significant variation in effort per
system release to be explained and that 74.18% of the variance
in effort per system release is between releases within a system,
whereas 25.82% of the variance is between systems.
19 The coefficients suggest that adding one more same-system MR
to a system release’s average organizational-unit experience would
improve system-release productivity by 1.43 hours per system-
release. Adding one more related system MR to a system release’s
average experience would improve system-release productivity by
5.47 hours per release, whereas adding one more unrelated system
MR to a system release’s average experience would only improve
system-release productivity by 1.05 hours per release.



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1327

Table 3 Results for System Releases (Dependent Variable: Ln Effort Per System Release)

Variables Model 1 Model 2 Model 3

Intercept (
0� 2�779∗∗∗ �0�045� 1�088∗∗∗ (0.264) 1�016∗∗∗ (0.262)
Ln Size (
1� 0�415∗∗∗ (0.010) 0�400∗∗∗ (0.009)
Ln Average File Complexity (
2� −0�334∗∗∗ (0.039) −0�297∗∗∗ (0.038)
Ln Percent New Group MRs (
3� 0�077∗∗∗ (0.006) 0�064∗∗∗ (0.006)
Ln Percent Maintenance Individual MRs (
4� 0�048∗∗∗ (0.008) 0�051∗∗∗ (0.008)
Ln Percent Maintenance Group MRs (
5� 0�096∗∗∗ (0.006) 0�085∗∗∗ (0.006)
Ln Avg. No. of Developers Per MR (
6� −0�706∗∗∗ (0.089) −0�712∗∗∗ (0.087)
Ln Avg. Priority (
7� 0�029 (0.017) 0�033∗ (0.016)
Start Month (
8� −0�000 (0.000) −0�000 (0.000)

Ln Average Unit Same-System Exp. (
9� −0�014 (0.012)
Ln Average Unit Unrelated-Systems Exp. (
11� −0�010 (0.009)
Ln Average Shared System Release Exp. (
12� 0�056∗∗∗ (0.005)

Deviance (−2 Log Likelihood) 9,966.4 6,138.4 6,017.6
Within-system variance 4.6092 0.8649 0.8209
Deviance difference (�Dev) 3,828 121
Proportion of within-system variance explained (%) 81.24 82.19

Notes. (1) Number of observations (no. of system releases)= 2�282; number of systems included in fixed-effects= 68,
df= 2202. (2) Within-subject correction for AR(1) repeated measures error structure included for Models 2 and 3.

unit experience in related systems had a significantly
greater impact on system-release productivity than
average unit experience in the same system (t = 2�24,
p < 0�05) and average unit unrelated-system experi-
ence (t = 3�17, p < 0�01). There were no significant dif-
ferences in the impact of average unit same-system
experience and average unit unrelated-systems expe-
rience on system-release productivity (t = 0�22, p >
0�10). These results provided partial support for H3,
as the results show that although related-system expe-
rience had a greater impact on productivity than
same-system experience, unrelated-system experience
had the same impact on productivity as same-system
experience. We also found that H4C is not supported
as the effort per release increased with the average
shared system release experience of individuals in
the organizational unit (Equation (3), �11 = 0�056, p <
0�001).

6. Discussion
In this section, we discuss our results, and provide
interpretations and support for our findings by draw-
ing on insights from interviews with six key in-
formants in the organization. The key informants
include three software developers and three quality-
assurance personnel. These interviewees were selected
to provide the perspectives of both developers and
employees involved in process improvement. Most
interviewees have worked on this product for at least
ten years; thus they were able to provide insights into
the institutional context and history of the develop-
ment process for the product.

6.1. Learning from Individual Experience
At the individual level, specialized experience has
the greatest impact on individual productivity (H1A),

probably because of the effort to learn a new system,
as highlighted by one interviewee: “Every time you
do something, there’s a learning curve, unless you’ve
seen it before” (Developer A). Interviews with devel-
opers further bolstered our argument that experience
from working on the same system enables develop-
ers to gain familiarity with the system domain and
increases understanding of the structure and architec-
ture of the components and files, as well as the code.
A developer highlighted how experience in a system
helped him to understand the system as a whole:

The individuals become productive when they learn
all the aspects of [the system] � � � � If you’re very new
to it, then you may have difficulty figuring out, if you
make this change, how does it impact everyone else, or
how does this really relate to what they’re doing over
there. After a while, you know all of that. I know that
I shouldn’t change this, because it will have an impact
over there, but if I do it this way, it will be much more
isolated.” (Developer B)

We further found that prior experience in related
systems had a more significant effect than experi-
ence in unrelated systems on individual productivity
(H1B). This shows that developers’ prior experience
from working on related systems transfers across sys-
tems more effectively than their experience in unre-
lated systems, to improve their productivity in work
on the current system.
At the group level of analysis, we found that diverse

experience in related systems had a more significant
impact than specialized experience in the same system
(H2). This confirms prior research about the role of
individual diversity in improving group performance.
Although Bunderson and Sutcliffe (2002) found a pos-
itive relationship between individual functional diver-
sity and team performance, the managers in their



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1328 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

sample had a fairly narrow range of functional experi-
ence. The question that remained unanswered, there-
fore, was whether the finding was applicable for
groups where individuals had a wide range of experi-
ences. Our study thus provides some insights into this
question. Our results show that experience in unre-
lated systems appeared to have less impact on pro-
ductivity than experience in the same system and in
related systems. This is perhaps because of the diffi-
culties in integrating experiences across a wide range
of systems, and because experience in unrelated sys-
tems is typically less relevant than experience in the
same and related systems. These results suggest that
it is important for managers to pay attention to the
extent of the diversity in experience that individuals
bring into a team, as too much diversity in experience
may not necessarily be good for the team.
At the organizational-unit level of analysis, we

found that only experience in related systems im-
proved system-release productivity, whereas average
unit experience in the same system or in unrelated
systems had no effect on this type of productivity.
Diverse experience in related systems is important for
organizational units for several reasons. First, orga-
nizations gain greater flexibility from being able to
move developers to different systems based on the
differing needs of the organizational units. As high-
lighted by an interviewee, the ability to move people
to different systems provides the flexibility to cater to
differing levels of demand in different systems:

Many [developers] have experience in more than one
[system]. This is so support can be given to the active
development on the effect of changes on other systems.
(Quality manager D)

Second, increased absorptive capacity from greater
breadth of knowledge may also explain why diverse
experience in related systems improves the pro-
ductivity of organizational units. Although diverse
experience may be costly for each individual, the
organizational unit as a whole is able to benefit from
the flexibility in task assignment and from having
experts with an overall view of the related parts of
the product:

It is useful to have these experts around, who have a
good view of the software, and can give a deciding
view on certain more tricky problems. (Quality man-
ager D)

Our results, however, show that it is the invest-
ment in diverse experience in related systems that
provide the greatest payoff for organizational units.
Accumulating diverse experience in unrelated sys-
tems is not an effective strategy, perhaps because too
much diversity in experience makes it difficult for the
organizational unit to integrate the experience across
all individuals working on the system release. It could

also be that knowledge about unrelated systems is
less relevant to the task at hand.
In summary, we found that the relative importance

of the different types of experience differs across levels
of analysis. At the individual level, specialized experi-
ence within the same system has the greatest impact
on individual productivity. However, as we progress
from the individual, to the group, and organizational
unit levels of analysis, diverse experience in related
systems plays a larger role in improving the pro-
ductivity of groups and organizational units. Diverse
experience in unrelated systems, however, remains
the factor having the least influence on productiv-
ity at all three levels of analysis. Our results provide
guidance to organizations about how they can bal-
ance between the need for exploitation and explo-
ration. At the individual level, exploitation appears
to be the most effective strategy, as management can
capitalize on the specialized experience gained by
developers to improve productivity at the individual
level. With larger and more complex MRs and system
releases, however, our results highlight the increas-
ingly important role of having an exploration strat-
egy, namely by increasing the diversity of developers’
experience in related systems. Such diverse experi-
ence will enable developers to work more effectively
with one another, improve the absorptive capacity of
the organizational-unit, and provide more flexibility
to the organizational unit in allocating work to devel-
opers, thus improving group and organizational-unit
productivity. Nevertheless, managers must be cog-
nizant of the costs involved in their exploration strat-
egy, as our results for unrelated-system experience
shows that the productivity benefits of providing
developers with experience in a large number of unre-
lated systems may not be substantial.

6.2. Learning from Working with Others
Our results also emphasize the learning opportuni-
ties from working with others in software develop-
ment. At the individual level, our results suggest that
individual developers do learn from other developers,
as individuals exhibit greater improvements in pro-
ductivity when they work with a greater number of
developers (H4A). Our interviewees also highlighted
the importance of having more experienced develop-
ers transfer their knowledge to new developers:

As new people come, and work in an area they’re not
familiar with, I can help them get on board quicker. I
help review, discuss things with them, so having the
experts in each system helps to move people forward
as you bring in people with different skills. (Devel-
oper A)

Prior experience working with one another also
significantly improves the productivity of developers
working together on a group MR (H4B). This finding



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1329

highlights the advantages of putting individuals who
have experience working with one another on the
same team in software development. This hypothesis
also found support in the interviews we conducted.
A developer, for example, highlighted the importance
of prior working relationships in understanding each
other’s work:

Information transfer is simple for engineers who have
worked together for a period of time since common
similarities can be found. (Developer C)

Finally, the results show that greater shared expe-
rience among developers in the same system release
actually decreases the productivity of the organiza-
tional unit in completing system releases, rather than
improve the productivity as we had expected (H4C).
This result highlights that although sharing of expe-
rience at the group level will increase productivity
by improving coordination and influencing the ease
of knowledge sharing, sharing of experience at the
organizational unit actually decreases productivity.
One possible reason is that at the organizational-unit
level, coordination is required on a larger scale and
is more formally done. Work may be more struc-
tured and managed in a more centralized approach,
and explicit rather than implicit coordination mech-
anisms may be leveraged. Thus, the importance of
having shared knowledge developed through work-
ing with one another becomes less important in affect-
ing the productivity of system releases, compared to
group MRs. Moreover, too much sharing of experi-
ence at the organizational-unit level may lead to the
entrenchment of certain practices or habits that may
be difficult to change (Brown and Eisenhardt 1995).
For example, one of our interviewees highlighted how
individuals might be unwilling to deviate from past
practices:

Following a regimented path leads to people making
the same mistakes since they don’t want to deviate
from the practices of past developments that they have
agreed upon. (Developer B)

6.3. Limitations
The results of this study should be interpreted with
several limitations in mind. First, the learning-curve
approach is an effective method to examine whether
there are any productivity improvements in organi-
zations due to the accumulation of experience, but
the method does not examine the specific mechanisms
by which experience affects productivity. Thus, it is
important for future research to examine the differ-
ent learning mechanisms adopted by organizations
and factors influencing their effectiveness. Second, by
examining productivity as the dependent variable,
we focused on a very important but single aspect of
learning—learning to complete MRs with the least

amount of effort, taking into consideration the com-
plexity, size, and other aspects of the MRs. An impor-
tant direction for future research is to examine other
aspects of learning in software development, such
as learning about quality and process improvement.
Finally, we examined learning in the context of incre-
mental software development. A different scale of
learning may be applicable in purely new develop-
ment, and it is therefore important for future research
to examine whether our results apply in that context.

7. Conclusions
Our study extends the literature on organizational
learning by discerning the improvement in productiv-
ity that is attributable to different kinds of experience
at the individual, group and organizational-unit lev-
els of analysis. We also provide insights into the rela-
tive value of specialized versus diversified experience
for learning. This is important, because in leveraging
experience, managers need to weigh the gains from
specialized experience versus diverse experience in
influencing productivity. Our study contributes to the
limited number of studies examining the balance of
exploitation and exploration across multiple levels of
analysis (Gupta et al. 2006), and provides suggestions
about how software development organizations can
effectively balance between exploitation and explo-
ration strategies. At the individual level, exploitation
appears to be an effective strategy, as management
can capitalize on the specialized experience gained
by developers to improve individual productivity. To
handle larger and more complex MRs and system
releases at the group and organizational-unit levels,
organizations may need to also adopt an exploration
strategy to provide developers with diverse experi-
ence in related systems. This influences the produc-
tivity of groups and organizational units by facilitat-
ing developers’ work in teams, and increasing the
absorptive capacity of the organizational unit. Never-
theless, organization units must be cognizant of the
costs involved in their exploration strategy, as our
results show that the benefits of providing develop-
ers with experience in unrelated systems are unlikely
to be substantial. In addition, our study shows that
working with others provides developers with valu-
able opportunities to learn from others and to learn
to work with others.
Our study also contributes by showing that the

learning curve is salient in knowledge work and by
quantifying the extent to which learning improves
performance in knowledge work activities like
software development. Understanding whether indi-
viduals, groups, and organizations can leverage prior
experience to improve productivity in knowledge
work has important implications for hiring, training,



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
1330 Management Science 53(8), pp. 1315–1331, © 2007 INFORMS

and organization of work. Our analyses reveal that
the highest rate of learning from individual experi-
ence in our context was about 21%,20 lower than the
learning rate of 80% found in manufacturing stud-
ies (Argote 1999). This suggests that experience has
a substantially larger impact on productivity in man-
ufacturing compared to knowledge work. Further,
because software development tasks are somewhat
more structured and repetitive than other knowledge-
work tasks, the learning rate in those tasks could be
even lower.

8. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.

Acknowledgments
The authors thank Linda Argote, Jim Herbsleb, Sara Kiesler,
Ann Majchrzak, Audris Mockus, and Denise Rousseau, for
their help and advice. The authors also gratefully acknowl-
edge the valuable comments of participants in research
seminars at Carnegie Mellon University, the University of
Oklahoma, the University of Michigan, and Georgia Tech
University, where earlier versions of this paper were pre-
sented. A prior version of this paper was also presented at
the Academy of Management Meeting in 2003.

References
Ang, S., S. A. Slaughter, K. Y. Ng. 2002. Human capital and institu-

tional determinants of information technology compensation:
Modeling multilevel and cross-level interactions. Management
Sci. 48(11) 1427–1445.

Argote, L. 1999. Organizational Learning: Creating, Retaining, and
Transferring Knowledge. Kluwer, Norwell, MA.

Argote, L., S. L. Beckman, D. Epple. 1990. The persistence and
transfer of learning in industrial settings.Management Sci. 36(2)
140–154.

Banker, R. D., S. A. Slaughter. 1997. A field study of scale economies
in software maintenance. Management Sci. 43(12) 1709–1725.

Banker, R. D., G. B. Davis, S. A. Slaughter. 1998. Software develop-
ment practices, software complexity, and software maintenance
performance: A field study. Management Sci. 44(4) 433–450.

Basili, V. R., G. Caldiera. 1995. Improve software quality by reusing
knowledge and experience. Sloan Management Rev. 37(1) 55–64.

Brooks, F. P. 1995. The Mythical Man Month: Essays on Software Engi-
neering. Prentice-Hall, Reading, MA.

Brown, S. L., K. M. Eisenhardt. 1995. Product development: Past
research, present findings, and future directions. Acad. Manage-
ment Rev. 20(2) 343–378.

Bryk, A. S., S. W. Raudenbush. 1992. Hierarchical Linear Models:
Applications and Data Analysis Methods, 1st ed. Sage, Newbury
Park, CA.

20 This progress ratio (see Argote 1999) is calculated by multiplying
the maximum learning rate by the mean number of individual and
group MRs completed per month. The learning rate for the system
release is lower (less than 10%).

Bunderson, J. S., K. M. Sutcliffe. 2002. Comparing alternative con-
ceptualizations of functional diversity in management teams:
Processes and performance effects. Acad. Management J. 45(5)
873–893.

Chidamber, S. R., C. F. Kemerer. 1994. A metrics suite for object
oriented design. IEEE Trans. Software Engrg. 20(6) 476–493.

Cohen, W. M., D. A. Levinthal. 1990. Absorptive capacity: A new
perspective on learning and innovation. Admin. Sci. Quart.
35(1) 128–152.

Crossan, M. M., H. W. Lane, R. E. White. 1999. An organizational
learning framework: From intuition to institution. Acad. Man-
agement Rev. 24(3) 522–537.

Darr, E. D., L. Argote, D. Epple. 1995. The acquisition, transfer, and
depreciation of knowledge in service organizations: Productiv-
ity in franchises. Management Sci. 41(11) 1750–1762.

Ellis, H. 1965. The Transfer of Learning. Macmillan Company,
New York.

Espinosa, J. A. 2002. Shared mental models and coordination in
large-scale, distributed software development. Doctoral Disser-
tation, Carnegie Mellon University, Pittsburgh, PA.

Faraj, S., L. Sproull. 2000. Coordinating expertise in software devel-
opment teams. Management Sci. 46(12) 1554–1568.

Fichman, R. G., C. F. Kemerer. 1997. The assimilation of software
process innovations: An organizational learning perspective.
Management Sci. 43(10) 1345–1363.

Garud, R., A. Kumaraswamy. 2005. Vicious and virtuous circles in
the management of knowledge: The case of InfoSys Technolo-
gies. MIS Quart. 29(1) 9–33.

Graves, T. L., A. Mockus. 1998. Inferring change effort from config-
uration management databases. 5th IEEE Internat. Sympos. Soft-
ware Metrics, Bethesda, MD, http://www.mockus.us/papers/
effort/.

Greene, W. H. 2003. Econometric Analysis, 5th ed. Prentice-Hall,
Upper Saddle River, NJ.

Gupta, A., K. G. Smith, C. E. Shalley. 2006. The interplay be-
tween exploration and exploitation. Acad. Management J. 49(4)
693–706.

Herbsleb, J. D., A. Mockus. 2003. An empirical study of speed and
communication in globally-distributed software development.
IEEE Trans. Software Engrg. 29(6) 481–494.

Hofmann, D. A. 1997. An overview of the logic and rationale of
heirarchical linear models. J. Management 23(6) 723–744.

Holmqvist, M. 2004. Experiential learning processes of exploitation
and exploration within and between organizations: An empir-
ical study of product development. Organ. Sci. 15(1) 70–81.

Katz, R. 1982. The effects of group longevity on project communi-
cation and performance. Admin. Sci. Quart. 27(1) 81–104.

Kraut, R. E., L. A. Streeter. 1995. Coordination in software develop-
ment. Comm. ACM 38(3) 69–81.

Levitt, B., J. G. March. 1988. Organizational learning. Annual Rev.
Sociol. 14 319–340.

Liang, D. W., R. Moreland, L. Argote. 1995. Group versus individual
training and group performance: The mediating role of trans-
active memory. Personality and Soc. Psych. Bull. 21(4) 384–393.

Lindstrom, M. J., D. M. Bates. 1988. Newton-Raphson and EM algo-
rithms for linear mixed-effects models for repeated-measures
data. J. Amer. Statist. Assoc. 83(404) 1014–1022.

Littell, R. C., G. A. Milliken, W. W. Stroup, R. D. Wolfinger. 1996.
SAS System for Mixed Models. SAS Institute, Inc., Cary, NC.

Lyytinen, K., D. Robey. 1999. Learning failure in information sys-
tems development. Inform. Systems J. 9(2) 85–101.

Mannix, E., M. A. Neale. 2005. What differences make a differ-
ence? The promise and reality of diverse teams in organiza-
tions. Psych. Sci. Public Interest 6(2) 31–55.

March, J. G. 1991. Exploration and exploitation in organizational
learning. Organ. Sci. 2(1) 71–87.



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
Management Science 53(8), pp. 1315–1331, © 2007 INFORMS 1331

Matusik, S. F., M. B. Heeley. 2005. Absorptive capacity in the
software industry: Identifying dimensions that affect knowl-
edge and knowledge creation activities. J. Management 31(4)
549–572.

Meyerson, D., K. E. Weick, R. M. Kramer. 1996. Swift trust and
temporary groups. R. M. Kramer, T. R. Tyler, eds. Trust in Orga-
nizations: Frontiers of Theory and Research. Sage, Thousand Oaks,
CA, 166–195.

Pisano, G. P., R. M. J. Bohmer, A. C. Edmondson. 2001. Organiza-
tional differences in rates of learning: Evidence from the adop-
tion of minimally invasive cardiac surgery. Management Sci.
47(6) 752–768.

Rajlich, V. 2006. Changing the paradigm of software engineering.
Comm. ACM 49(8) 67–70.

Ramanujan, S., R. W. Scamell, J. R. Shah. 2000. An experimental
investigation of the impact of individual, program, and organi-
zational characteristics on software maintenance effort. J. Sys-
tems Software 54(2) 137–157.

Reagans, R., L. Argote, D. Brooks. 2005. Individual experience and
experience working together: Predicting learning rates from
knowing who knows what and knowing how to work together.
Management Sci. 51(6) 869–881.

Robillard, P. N. 1999. The role of knowledge in software develop-
ment. Comm. ACM 42(1) 87–92.

Rulke, D., J. Galaskiewicz. 2000. Distribution of knowledge, group
network structure, and group performance. Management Sci.
46(5) 612–625.

Sacks, M. 1994. On-the-Job Learning in the Software Industry. Quorum
Books, Westport, CT.

SAS Institute. 2000. SAS OnlineDoc, Version 8. SAS Institute, Inc.,
Cary, NC, http://v8doc.sas.com/sashtml/.

Schilling, M. A., P. Vidal, R. E. Ployhart, A. Marangoni. 2003. Learn-
ing by doing something else: Variation, relatedness, and the
learning curve. Management Sci. 49(1) 39–56.

Schmidt, R. A. 1975. A schema theory of discrete motor skill learn-
ing. Psych. Rev. 82(4) 225–260.

Simonton, D. 1999. Creativity as blind variation and selective reten-
tion: Is the creative process Darwinian? Psych. Inquiry 10(4)
309–328.

Singer, J. D. 2002. Fitting individual growth models using SAS
PROC MIXED. D. S. Moskowitz, S. L. Hershberger, eds. Mod-
eling Intraindividual Variability with Repeated Measures Data:
Methods and Applications. L. Erlbaum Associates, Mahwah, NJ,
135–170.

Thornton, R. A., P. Thompson. 2001. Learning from experience and
learning from others: An exploration of learning and spillovers
in wartime shipbuilding. Amer. Econom. Rev. 91(5) 1350–1368.

Tyre, M. J., E. von Hippel. 1997. The situated nature of adaptive
learning in organizations. Organ. Sci. 8(1) 71–83.

Wastell, D. 1999. Learning dysfunctions in information systems
development: Overcoming the social defences with transitional
objects. MIS Quart. 23(4) 581–600.

Weber, R. A., C. F. Camerer. 2003. Cultural conflict and merger fail-
ure: An experimental approach.Management Sci. 49(4) 400–415.

Wegner, D. M. 1986. Transactive memory: A contemporary analysis
of the group mind. B. Mullen, G. R. Goethals, eds. Theories of
Group Behavior. Springer-Verlag, New York, 185–205.

Yelle, L. E. 1979. The learning curve: Historical review and compre-
hensive survey. Decision Sci. 10(2) 302–328.

Zander, U., B. Kogut. 1995. Knowledge and the speed of the transfer
and imitation of organizational capabilities—An empirical-test.
Organ. Sci. 6(1) 76–92.



MANAGEMENT SCIENCE
doi 10.1287/mnsc.1060.0687ec
pp. ec1–ec10

informs ®

©2007 INFORMS

e - c o m p a n i o n
ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion—“Learning from Experience in
Software Development: A Multilevel Analysis” by

Wai Fong Boh, Sandra A. Slaughter, and J. Alberto Espinosa,
Management Science, doi 10.1287/mnsc.1060.0687.

Online Appendices
Appendix A. Operationalization of Variables for All Three Levels
of Analysis

Operationalization for level of analysis:

Variable Individual developer MRs Group MRs System releases

Effort per
MR/System
Release

Total number of hours to
complete the individual
MR.

Total number of hours to
complete the group MR.

Total number of hours to
complete the system
release. i.e. sum of the
imputed effort of all MRs
included in the system
release

Same-System
Experience

Number of MRs
completed in the current
system by the individual
prior to starting work
on the current MR

Average number of MRs
completed in the current
system by individuals
working on the group
MR prior to starting
work on the current MR

Average number of MRs
completed in the current
system by individuals in
the organizational unit
working on the system
release prior to starting
work on the current system
release

Related-System
Experience

Number of MRs
completed in other
related systems (relative
to the system of the
current MR) by the
individual prior to
starting work on
the current MR

Average number of MRs
completed in other
related systems (relative
to the system of the
current MR) by
individuals working on
the group MR prior to
starting work on the
current MR

Average number of MRs
completed in other related
systems (relative to the
system of the current MR)
by developers in the
organizational unit
working on the current
system release prior to
starting work on the
system release

Unrelated-System
Experience

Number of MRs
completed in other
unrelated systems
(relative to the system
of the current MR) by
the individual prior to
starting work on the
current MR

Average number of MRs
completed in other
unrelated systems
(relative to the system of
the current MR) by
individuals working on
the group MR prior to
starting work on the
current MR

Average number of MRs
completed in other
unrelated systems (relative
to the system of the current
MR) by developers in the
organizational unit
working on the current
system release prior to
starting work on the
system release

ec1



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
ec2 pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS

Appendix A (Continued)

Operationalization for level of analysis:

Variable Individual developer MRs Group MRs System releases

Experience
Working
with
Other
Developers

Total number of distinct
developers that an
individual has worked
with prior to starting
work on the current MR

N.A. N.A.

Average Shared
Experience

N.A. Average number of MRs
completed by both
members of each dyad
included in the group
MR prior to starting
work on the current
group MR, averaged
across all dyads in
the group

Average number of system
releases completed by both
members of each dyad in
the organizational unit
included in the system
release prior to starting
work on the current system
release, averaged across all
dyads working on the
system release

Time The number of months
from the start of the
development of the
product that the
individual MR was
started.

The number of months
from the start of the
development of the
product that the group
MR was started.

The number of months from
the start of the
development of the
product that the system
release was started.

Size Lines of codes added,
deleted, and changed for
the individual MR

Lines of codes added,
deleted, and changed for
the group MR

Lines of codes added,
deleted, and changed for all
MRs in the system release

Complexity The number of files that
have to be changed to
complete the individual
MR

The number of files that
have to be changed to
complete the group MR

Average file complexity of
the MRs in the system
release

Priority Importance of the
individual MR as
determined by the
change committee

Importance of the group
MR as determined by the
change committee

Average priority of the MRs
in the system release as
determined by the change
committee

Number of
Developers

N.A. Total number of
developers working on
the group MR

Average number of
developers per MR in the
organizational unit
working on the system
release

New
Development

Group work

Indicates whether the
individual MR is a new
development, or
maintenance work

N.A.

Indicates whether the
group MR is a new
development, or
maintenance work

N.A.

Percentage of MRs
constituting:
(1) new development
individual MRs

(2) new development
group MRs

(3) maintenance
individual MRs

(4) maintenance group
MRs in the system
release



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS ec3

Appendix B. Effort Computations for Developer Effort
This appendix explains how we impute effort (number of labor hours) expended for each MR, based
on the effort-computation algorithm developed in Graves and Mockus (1998) and Atkins et al. (2001),
which estimates effort for each MR from information available in the version control and change
management systems. Although we have the date and time at which each MR started and ended, this
elapsed time is not equivalent to effort, as developers can be working on several MRs at the same
time. Nevertheless, by keeping track of the number of MRs that each individual developer works on in
each month, we can generate a good estimate of the effort expended per MR. In essence, the algorithm
divides each developer’s monthly effort equally among the open MRs that the developer is working
on as a first estimation. This initial estimation of effort for each MR is then used as the dependent
variable measure in analyzing Equation (1) and Equation (2). The regression analyses then provide
predicted values of the effort per MR based on the estimated coefficients. This is then used to refine
the estimation of effort expended for each MR, and the regression analysis and re-estimation steps are
repeated until there is no improvement in the log-likelihood estimates in the analyses. For individual
MRs, our analyses converged in the fourth iteration; for group MRs, our analyses converged in the
third iteration to produce the effort estimates yielding the optimal log-likelihood results.
To cater to our analysis plan of dividing the data set into individual MRs and group MRs, we made
some minor modifications to the Atkins et al. (2001) and Graves and Mockus (1998) algorithms. We
illustrate the algorithm using an example for a single developer. Developer A worked on MR A in
January, and worked on MR A and MR B in February. We assume that each developer spends 1 unit
of time per month, an assumption that has been shown to provide similar results as using monthly
time sheet data (Atkins et al. 2001).
Step 1. We divide up the monthly effort equally across all changes open in that month to obtain
estimates of total MR efforts for each developer. Developer A spends one unit of effort on MR A in
January, 0.5 units of effort on MR A in February, and 0.5 units of effort in February on MR B. The
initial estimation of effort is thus 1.5 units of effort for MR A, and 0.5 units of effort for MR B. For
group MRs, the initial estimation of effort for all the individuals working on the group MR are added
together to form the initial estimation of effort for the group MR.
Step 2. We fit our regression models (Equations (1) and (2)) using the initial estimation of effort
as the dependent variable measures for all developers. For individual MRs, the predicted values
become the new estimates of MR effort. For group MRs, the predicted values of effort for group MRs

Figure EC.1 Network Diagram Showing How Systems Are Related to One Another

Note. Unconnected dots show systems that are not related to any other systems.



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
ec4 pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS

Table EC.1 Descriptive Statistics for Experience Variables of Individuals

Variable Mean Std. dev. Minimum Maximum

Same-System Experience 34�916 60�411 0.000 1�195�280
Related-Systems Experience 31�183 75�048 0.000 2�443�600
Unrelated-Systems Experience 4�119 15�566 0.000 258�462
Total cumulative experience 70�219 125�155 0.000 2�937�000

Note. Number of MRs= 518�971.

are divided among individuals involved in the group MR based on each individual’s initial effort
contribution to the group MR (i.e., the proportion of effort, using estimates from Step 1, expended by
each individual).EC1 This is the only step that differs from the Graves and Mockus (1998) algorithm,
as the latter did not differentiate between group MRs and individual MRs.
Step 3. Next, we rescale the effort per MR per month for each developer so that it is equal to the
predicted values of effort expended for each MR. If the predicted effort for MR A is 2.0, we then
impute that developer A spent �1/1�5× 2� 1.33 units of effort in January, and 0.67 units of effort in
February on MR A. If the predicted value for MR B is 0.5, we impute that developer A spent 0.5 units
of effort in February on MR B.
Step 4. We rescale the effort per month per MR so that the total effort expended per month is equal
to the observed monthly efforts for each developer. In our example for developer A, effort for MR A
is rescaled to 1.0 in January, and �0�67/�0�67+ 0�5�× 1�0� 0.57 in February, whereas effort for MR B is
rescaled to 0.43 in February (so that effort in February still sums to 1.0 �0�57+ 0�43�).

Iterate. The above four steps are repeated for each iteration, until convergence, which occurs when
there is no improvement in the −2 log likelihood in the model fitting step. For our analysis, the
−2 log likelihood measure converged at the 4th iteration for individual MRs, and it converged at the
3rd iteration for group MRs. Hence, the imputed effort measures from the 4th iteration were used
in the analyses for individual MRs, and the imputed effort measures from the 3rd iteration were
used in the analyses for group MRs.

Appendix C. Definition of Related and Unrelated Systems
We examined the extent to which two systems are functionally related by calculating the extent to
which both systems have MRs generated by the same initial request. We observed a high extent of
variation in the extent to which any two systems are related, where the number of initial requests
affecting any two systems can range from zero to 7,227. The mean number of initial requests affecting
any two systems is 81. Using this as the cut-off value, we define two systems to be functionally related
if they have at least 81 initial requests affecting both systems. Based on this definition, we observed
that 19.59% of all possible pairs of systems are considered to be related. Figure EC.1 is a network
diagram that shows how the systems are related to one another.
Using this definition of related and unrelated systems, we calculated the mean experience for each
individual in terms of the same-system, related-system, unrelated-system experience, and overall MR
experience. Table EC.1 provides the descriptive statistics for the different types of experience for all
the individuals in the data set.
We conducted sensitivity tests to examine if our results would change if we use different cut-off
values to define related vs. unrelated systems. The first test used the mean number of initial requests
affecting any two systems plus one standard deviation (334) as the cut-off value, and the second test
used the modal number of initial requests affecting any two systems (14) as the cut-off value.EC2 Our
results remain robust across all the sensitivity tests.

EC1 The estimated effort expended by each individual in a group MR is the predicted amount of effort for the group MR,
multiplied by the proportion of effort that each individual puts in for the group based on the estimates in Step 1.
EC2 We did not use the mean number of initial requests affecting any two systems minus one standard deviation as this cut-off
was a negative number.



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS ec5

Appendix D. Correlation Tables for Analyses at Individual, Group, and
Organizational-Unit Levels of Analysis

Table EC.2 Correlation Matrix for Individual Developer MRs

Variable Mean (s.d.) 1 2 3 4 5 6 7 8 9

1. Ln Effort Per Individual MR −1�99 �1�05�
2. Ln Size 3.11 (2.14) 0�16
3. Ln File Complexity 0�42 �0�71� 0�10 0�46
4. New Development 0�41 �0�49� −0�24 0�08 0�10
5. Priority 2�17 �1�04� 0�21 −0�08 −0�12 −0�49
6. Start Month 153�26 �50�56� −0�13 −0�07 −0�09 0�04 0�07
7. Ln Individual Same-System Experience 3�28 �3�35� −0�27 −0�01 −0�02 −0�06 0�06 0�10
8. Ln Individual Related-Systems Experience 2�02 �5�45� −0�23 −0�07 −0�08 0�07 0�03 0�22 0.14
9. Ln Individual Unrelated-Systems Experience −6�87 �6�91� −0�09 −0�01 0�04 0�01 0�03 0�14 0.02 0.21
10. Ln Individual Experience Working with Other dev. −3�28 �6�33� −0�24 −0�01 0�04 0�09 −0�08 −0�14 0.08 0.14 0.11

Notes. All correlations with absolute value> 0�003 are significant at p < 0�001; number of observations (number of MRs)= 518�971.

Table EC.3 Correlation Matrix for Group MRs

Variables Mean (s.d.) 1 2 3 4 5 6 7 8 9 10

1. Ln Effort Per Group MR 0�19 �1�16�
2. Ln Size 7�19 �6�09� 0�53
3. Ln File Complexity 1�92 �1�25� 0�70 0�37
4. Ln Number of Developers in Group MR 0�84 �0�28� 0�50 0�22 0�44
5. New Development 0�35 �0�48� 0�16 0�11 0�22 0�16
6. Priority 1�28 �1�27� −0�11 −0�02 −0�10 0�00 0�15
7. Start Month 139�61 �52�36� −0�17 0�00 −0�04 −0�07 0�02 0.04
8. Ln Average Group Same-System Experience 3�45 �2�76� −0�17 −0�14 0�02 0�04 −0�06 0.04 0.16
9. Ln Average Group Related-Systems Experience 3�20 �3�85� −0�23 −0�03 −0�08 0�01 0�16 0.20 0.25 0.16

10. Ln Average Group Unrelated-Systems Experience −3�92 �6�98� −0�14 −0�03 0�01 0�07 0�14 0.14 0.21 0.04 0.28
11. Ln Average Shared Group Experience −5�04 �6�37� −0�20 −0�24 0�06 0�17 −0�02 0.01 0.07 0.28 0.07 0.10

Notes. All correlations with absolute value> 0�018 are significant at p < 0�001; number of observations (number of group MRs)= 30�225.

Table EC.4 Correlation Matrix for System Releases

Variables Mean (s.d.) 1 2 3 4 5 6 7 8 9 10 11 12

1. Ln Effort per System Release 2�78 �2�15�
2. Ln Size 8�95 �3�29� 0�84
3. Ln Average File Complexity 0�98 �0�59� 0�12 0�30
4. Ln Percent New group MRs −2�43 �3�30� 0�55 0�55 0�17
5. Ln Percent Maintenance −1�72 �2�86� 0�43 0�44 0�02 0�15

Individual MRs
6. Ln Percent Maintenance Group MRs −4�82 �4�39� 0�58 0�54 0�11 0�31 0�25
7. Ln Number of Developers per MR 0�37 �0�31� 0�21 0�28 0�25 0�49 −0�14 0�35
8. Ln Average Priority 0�52 �1�22� 0�20 0�19 0�02 0�17 0�11 0�09 −0�02
9. Start Month 133�71 �53�92� −0�13 −0�15 −0�13 −0�15 −0�09 −0�08 −0�11 −0�03
10. Ln Average Unit Same-System 2�77 �2�03� 0�29 0�29 −0�05 0�25 0�19 0�24 0�16 0�09 0.20

Experience
11. Ln Average Unit Related-Systems 2�84 �5�29� 0�26 0�18 −0�11 0�23 0�10 0�25 0�08 0�00 0.05 0�30

Experience
12. Ln Average Unit Unrelated-Systems 2�92 �2�79� −0�08 −0�07 −0�02 −0�04 0�15 −0�01 −0�09 0�03 0.27 −0�02 −0�08

Experience
13. Ln Average Shared-System Release 6�17 �4�72� 0�47 0�38 −0�03 0�40 0�19 0�37 0�22 0�06 0.09 0�29 0�29 0.23

Experience

Notes. All correlations with absolute value> 0�06 are significant at p < 0�001; number of observations (number of system releases)= 2�282.



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
ec6 pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS

Appendix E. Sensitivity Analysis to Check for Potential Multicollinearity
Problems
We conducted sensitivity analysis at the individual, group, and organizational unit levels of analyses to
check for potential multicollinearity problems. For each level of analysis, we conducted the following
analyses:
(1) We first reviewed the correlation tables (Tables EC.2, EC.3, and EC.4) to ensure that the correla-
tions between the independent variables were not excessively high.
(2) We re-ran each analysis using ordinary least squares (OLS) so as to obtain the VIF and Condition
Indices (CIs). The variance inflation factor (VIF) and CI for each level of analysis are provided in
Tables EC.5, EC.6, and EC.7.
(3) For each level of analysis, we test and demonstrate the robustness of our model by adding the
control variables one by one into our main model to show that the results of our analyses are stable
and are not affected by dropping control variables.
We discuss the results for each level of analysis below.

1. Dependent Variable: Productivity for Individual MRs

1.1. Correlations Amongst Independent Variables. Table EC.2 shows that none of the correlations
amongst the independent variables are higher than 0.5. Only two correlations are higher than 0.4: (1)
Individual MRs that are new feature development are likely to have lower priorities �r =−0�493�; and
(2) MRs that are bigger in size are likely to be more complex �r = 0�462�.

1.2. VIFs and Condition Index. The last column in Table EC.5 shows the VIFs for the independent
variables. The highest VIF in this analysis is only 1.357, and the CI of 13.674 is considerably low. These
figures suggest that multicollinearity is not a problem for the individual level of analysis.

Table EC.5 Robustness Analysis for Individual Level Analysis

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 VIF

Intercept −1�589∗∗∗ −1�775∗∗∗ −1�775∗∗∗ −1�640∗∗∗ −1�879∗∗∗ −1�768∗∗∗

�0�013� �0�013� �0�013� �0�013� �0�013� �0�019�
Ln Size (�1) 0�055∗∗∗ 0�048∗∗∗ 0�050∗∗∗ 0�050∗∗∗ 0�050∗∗∗ 1.278

�0�000� �0�000� �0�000� �0�000� �0�000�
Ln File Complexity (�2) 0�048∗∗∗ 0�064∗∗∗ 0�068∗∗∗ 0�068∗∗∗ 1.300

�0�001� �0�001� �0�001� �0�001�
New Development (�3) −0�366∗∗∗ −0�273∗∗∗ −0�273∗∗∗ 1.357

�0�002� �0�002� �0�002�
Priority (�4) 0�092∗∗∗ 0�092∗∗∗ 1.351

�0�001� �0�001�
Start Month (�5) −0�001∗∗∗ 1.122

�0�000�

Ln Individual Same-System −0�033∗∗∗ −0�032∗∗∗ −0�032∗∗∗ −0�033∗∗∗ −0�034∗∗∗ −0�033∗∗∗ 1.038
Experience (�6) �0�001� �0�001� �0�001� �0�001� �0�001� �0�001�

Ln Individual Related-Systems −0�030∗∗∗ −0�029∗∗∗ −0�029∗∗∗ −0�027∗∗∗ −0�027∗∗∗ −0�026∗∗∗ 1.144
Experience (�7) �0�001� �0�001� �0�001� �0�001� �0�001� �0�001�

Ln Individual Unrelated-Systems −0�010∗∗∗ −0�011∗∗∗ −0�011∗∗∗ −0�010∗∗∗ −0�011∗∗∗ −0�009∗∗∗ 1.072
Experience (�8) �0�001� �0�001� �0�001� �0�001� �0�001� �0�001�

Ln Individual Experience Working −0�017∗∗∗ −0�018∗∗∗ −0�018∗∗∗ −0�015∗∗∗ −0�015∗∗∗ −0�013∗∗∗ 1.081
with other dev (�9) �0�001� �0�001� �0�001� �0�001� �0�001� �0�001�

Deviance (−2 log likelihood) 771,015.8 738,189.8 736,008.1 696,024.1 686,870.8 685,662 CI:13.674
Within-individual variance 0�568 0�5612 0�5615 0�5241 0�5164 0�5165
Deviance difference (	dev) 755,713 32,826 2,182 39,984 9,153 1,209
Proportion of within-individual 48.81 49.42 49.40 52.77 53.46 53.45

variance explained (%)

Notes. (1) Number of observations (number of MRs)= 518�971; Number of subjects for random effects (number of individuals)= 5�123; number
of systems included in fixed-effects= 89. (2) Within-subject correction for AR(1) error structure and individual random effects are included for
all models.



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS ec7

Table EC.6 Robustness Analysis for Group Level Analysis

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 VIF

Intercept 0�302∗∗∗ −0�303∗∗∗ −1�211∗∗∗ −1�954∗∗∗ −1�974∗∗∗ −1�960∗∗∗ −1�761∗∗∗

�0�067� �0�058� �0�042� �0�038� �0�038� �0�038� �0�039�
Ln Size (�1) 0�086∗∗∗ 0�040∗∗∗ 0�034∗∗∗ 0�034∗∗∗ 0�034∗∗∗ 0�034∗∗∗ 1.301

�0�001� �0�001� �0�001� �0�001� �0�001� �0�001�
Ln File Complexity (�2) 0�556∗∗∗ 0�457∗∗∗ 0�448∗∗∗ 0�447∗∗∗ 0�446∗∗∗ 1.471

�0�003� �0�003� �0�003� �0�003� �0�003�
Ln Number of Developers 1�148∗∗∗ 1�137∗∗∗ 1�139∗∗∗ 1�119∗∗∗ 1.308
In Group MR (�3) �0�013� �0�013� �0�013� �0�013�

New development (�4) 0�105∗∗∗ 0�107∗∗∗ 0�106∗∗∗ 1.135
�0�007� �0�007� �0�007�

Priority (�5) −0�010∗∗∗ −0�011∗∗∗ 1.082
�0�003� �0�003�

Start Month (�6) −0�001∗∗∗ 1.125
�0�000�

Ln Avg. Group Same-System −0�032∗∗∗ −0�019∗∗∗ −0�029∗∗∗ −0�028∗∗∗ −0�027∗∗∗ −0�027∗∗∗ −0�024∗∗∗ 1.146
Experience (�7) �0�002� �0�002� �0�001� �0�001� �0�001� �0�001� �0�001�

Ln Avg. Group Related-Systems −0�052∗∗∗ −0�054∗∗∗ −0�037∗∗∗ −0�036∗∗∗ −0�038∗∗∗ −0�038∗∗∗ −0�034∗∗∗ 1.216
experience (�8) �0�002� �0�002� �0�001� �0�001� �0�001� �0�001� �0�001�

Ln Avg. Group Unrelated-Systems −0�003∗∗ −0�006∗∗∗ −0�012∗∗∗ −0�016∗∗∗ −0�017∗∗∗ −0�017∗∗∗ −0�016∗∗∗ 1.144
Experience (�9) �0�001� �0�001� �0�001� �0�001� �0�001� �0�001� �0�001�

Ln Avg. Shared-Group −0�016∗∗∗ −0�003∗∗ −0�019∗∗∗ −0�028∗∗∗ −0�027∗∗∗ −0�027∗∗∗ −0�027∗∗∗ 1.210
Experience (�10) �0�001� �0�001� �0�001� �0�001� �0�001� �0�001� �0�001�

Deviance (−2 log likelihood) 86,044.1 78,021.9 57,094.2 50,276.2 50,070.7 50,058.2 49,802.6 CI:15.439
Within-system variance 1�0133 0�7765 0�3889 0�3098 0�3077 0�3075 0�3047
Deviance difference (	dev) 8,803 8,022 20,928 6,818 206 13 256
Proportion of within-system 24.95 42.49 71.19 77.05 77.21 77.22 77.43

variance explained (%)

Notes. (1) Number of observations (no. of group MRs) = 30�225; number of systems included in fixed effects = 79, df = 30�000. (2) Within-
subject correction for AR(1) error structure included for all models.

1.3. Test of Model Robustness. Table EC.5 shows the results of our robustness analysis for indi-
vidual MRs, where control variables are added one at a time to our model. The results of the key
variables—the experience variables—are stable and are not affected by dropping control variables.

2. Dependent Variable: Productivity for Group MRs

2.1. Correlations Amongst Independent Variables. Table EC.3 shows that none of the correlations
amongst the independent variables are higher than 0.5. Only one correlation is higher than 0.4: group
MRs that have are higher in complexity are likely to involve more developers (r = 0�44).

2.2. VIFs and Condition Index. The last column in Table EC.6 shows the VIFs for the independent
variables. The highest VIF in this analysis is only 1.471, and the CI of 15.439 is also considerably low.
These figures suggest that multicollinearity is not a problem for the group level of analysis.

2.3. Test of Model Robustness. Table EC.6 shows the results of our robustness analysis for group
MRs, where control variables are added one at a time to our model. The results of the key variables—
the experience variables—are stable and are not affected by dropping control variables. Additionally,
there are no slip flips between models for any of the variables in the models.

3. Dependent Variable: Productivity for System Release

3.1. Correlations Amongst Independent Variables. Table EC.4 in Appendix D shows that none
of the correlations amongst the independent variables are higher than 0.55. Only three correlations
are higher than 0.4: (1) system releases that are larger in size tend to have a greater percentage of
maintenance individual MRs (r = 0�44); and (2) system releases that are larger in size tend to have
a greater percentage of group MRs, both maintenance group MRs (r = 0�54) and new development
group MRs (r = 0�55).



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
ec8 pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS

Table EC.7 Robustness Analysis for Organizational-Unit Level Analysis

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 VIF

Intercept 2�589∗∗∗ −1�104∗∗∗ −0�946∗∗∗ 0�695 0�975 0�977∗∗∗ 1�016∗∗∗

�0�471� �0�266� �0�259� �0�260� �0�257� �0�257� �0�262�
Ln size (
1) 0�480∗∗∗ 0�505∗∗∗ 0�407∗∗∗ 0�403∗∗∗ 0�401∗∗∗ 0�400∗∗∗ 2.471

�0�007� �0�008� �0�010� �0�009� �0�009� �0�009�
Ln Average File −0�395∗∗∗ −0�365∗∗∗ −0�299∗∗∗ −0�296∗∗∗ −0�297∗∗∗ 1.232
Complexity (
2) �0�040� �0�038� �0�038� �0�038� �0�038�

Ln Percent New 0�045∗∗∗ 0�066∗∗∗ 0�065∗∗∗ 0�064∗∗∗ 1.957
Group MRs (
3) �0�006� �0�006� �0�006� �0�006�

Ln Percent Maintenance 0�069∗∗∗ 0�051∗∗∗ 0�052∗∗∗ 0�051∗∗∗ 1.470
Individual MRs (
4) �0�008� �0�008� �0�008� �0�008�

Ln Percent Maintenance 0�072∗∗∗ 0�085∗∗∗ 0�085∗∗∗ 0�085∗∗∗ 1.653
Group MRs (
5) �0�006� �0�006� �0�006� �0�006�

Ln Avg. No. of Developers −0�727∗∗∗ −0�709∗∗∗ −0�712∗∗∗ 1.660
Per MR (
6) �0�086� �0�087� �0�087�

Ln Avg. Priority (
7) 0�033∗ 0�033∗ 1.073
�0�016� �0�016�

Start Month (
8) −0�000 1.238
�0�000�

Ln Avg. Unit Same-System 0�112∗∗∗ −0�012 −0�006 −0�015 −0�016 −0�017 −0�014 1.319
Experience (
9) �0�022� �0�013� �0�013� �0�012� �0�012� �0�012� �0�012�

Ln Avg. Unit Related-Systems −0�148∗∗∗ −0�060∗∗∗ −0�054∗∗∗ −0�055∗∗∗ −0�055∗∗∗ −0�055∗∗∗ −0�053∗∗∗ 1.242
Experience (
10) �0�025� �0�015� �0�015� �0�014� �0�014� �0�014� �0�014�

Ln Avg. Unit Unrelated-Systems −0�007 0�009 0�006 −0�010 −0�011 −0�011 −0�010 1.267
Experience (
11) �0�017� �0�010� �0�010� �0�009� �0�009� �0�009� �0�009�

Ln Avg. Shared-System 0�188∗∗∗ 0�076∗∗∗ 0�073∗∗∗ 0�056∗∗∗ 0�056∗∗∗ 0�056∗∗∗ 0�056∗∗∗ 1.545
Release Experience (
12) �0�009� �0�006� �0�005� �0�005� �0�005� �0�005� �0�005�

Deviance (−2 log likelihood) 8,779.9 6,449.5 6,354.9 6,092.4 6,022.3 6,018.2 6,017.6 CI: 22.367
Within-system variance 2�7583 0�9889 0�9492 0�8479 0�8229 0�8213 0�8209
Deviance difference (	dev) 1,187 2,330 95 263 70 4 1
Proportion of within-system 40.16 78.55 79.41 81.60 82.15 82.18 82.19

variance explained (%)

Notes. (1) Number of observations (number of system releases) = 2�282; number of systems included in fixed effects = 68, df = 2�202.
(2) Within-subject correction for AR(1) repeated measures error structure included for all models.

3.2. VIFs and Condition Index. The last column in Table EC.7 below shows the VIFs for the inde-
pendent variables. The highest VIF in this analysis is only 2.471, and the CI of 22.367 is also reasonably
low. These figures suggest that multicollinearity is not a problem for the organizational unit level of
analysis.

3.3. Test of Model Robustness. Table EC.7 shows the results of our robustness analysis for system
releases, where control variables are added one at a time to our model. The results for average unit
related-systems experience, and for average shared system experience are significant and consistent across all
the models. The results for average unit unrelated-systems experience are consistently insignificant across
all the models. The coefficient for average unit same-system experience became insignificant after the
system release size is controlled for (Model 2), and remained insignificant for the rest of the models.
This is likely because system releases with higher average unit same-system experience also tend to be
larger (r = 0�29), and system releases that are larger tend to require more effort to develop (r = 0�84).
Hence, the average individual same-system experience showed a positive and significant coefficient
in Model 1, and the coefficient became insignificant once the release size is controlled for. Note also
that when the percentage variables distinguishing between new development and maintenance for
individual and group MRs are added to the analysis in Model 4, the intercept changes to reflect its
new role in the analysis as the base case for these percentage variables (specifically, it reflects the value
of the coefficient for New Development Individual MRs).
Due to the slightly higher level of CI at the organizational unit level of analysis, we conducted
further robustness checks to ensure that the results were not driven by correlations amongst the



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS ec9

Table EC.8 Additional Robustness Analysis for Organizational-Unit Level Analysis

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Intercept 1�016∗∗∗ 1�087∗∗∗ 1�193∗∗∗ 1�073∗∗∗ 0�815∗∗∗

�0�262� �0�265� �0�269� �0�266� �0�260�
Ln size (
1) 0�400∗∗∗ 0�415∗∗∗ 0�413∗∗∗ 0�415∗∗∗ 0�405∗∗∗

�0�009� �0�010� �0�010� �0�010� �0�009�
Ln Average File Complexity (
2) −0�297∗∗∗ −0�335∗∗∗ −0�332∗∗∗ −0�334∗∗∗ −0�301∗∗∗

�0�038� �0�039� �0�039� �0�039� �0�038�
Ln Percent New Group MRs (
3) 0�064∗∗∗ 0�077∗∗∗ 0�078∗∗∗ 0�076∗∗∗ 0�063∗∗∗

�0�006� �0�006� �0�006� �0�006� �0�006�
Ln Percent Maintenance Individual MRs (
4) 0�051∗∗∗ 0�048∗∗∗ 0�051∗∗∗ 0�047∗∗∗ 0�043∗∗∗

�0�008� �0�008� �0�008� �0�008� �0�008�
Ln Percent Maintenance Group MRs (
5) 0�085∗∗∗ 0�096∗∗∗ 0�096∗∗∗ 0�095∗∗∗ 0�084∗∗∗

�0�006� �0�006� �0�006� �0�006� �0�006�
Ln Avg. No. of Developers Per MR (
6) −0�712∗∗∗ −0�706∗∗∗ −0�707∗∗∗ −0�706∗∗∗ −0�709∗∗∗

�0�087� �0�089� �0�089� �0�089� �0�087�
Ln avg. priority (
7) 0�033∗ 0�030+ 0�029+ 0�029+ 0�032+

�0�016� �0�017� �0�017� �0�017� �0�016�
Start Month (
8) −0�000 −0�000 −0�000 −0�000 −0�001∗∗

�0�000� �0�000� �0�000� �0�000� �0�000�

Ln Avg. Unit Same-System Experience (
9) −0�014 −0�003
�0�012� �0�013�

Ln Avg. Unit Related-Systems Experience (
10) −0�053∗∗∗ −0�036∗∗

�0�014� �0�013�
Ln Avg. Unit Unrelated-Systems Experience (
11) −0�010 −0�004

�0�009� �0�008�
Ln Avg. Shared-System Release Experience (
12) 0�056∗∗∗ 0�049∗∗∗

�0�005� �0�005�

Deviance (−2 log likelihood) 6,017.6 6,138.4 6,114.1 6,138.2 6,042.1
Within-system variance 0.8209 0.8649 0.8534 0.8648 0.8294
Proportion of within-system variance explained (%) 82.19 81.24 81.48 81.24 82.01

experience variables, by adding in the experience variables one at a time to the base model with only
the control variables. Table EC.8 below shows the results of this analysis.
The results in Table EC.8 show that the results for the experience variables remain the same when
added into the base model one at a time, indicating that the coefficients of the experience variables
were indicative of the true relationship between the experience variables and the dependent variable,
after controlling for size and other key characteristics of the system release. The results, therefore,
appear to be robust, and not subject to multicollinearity issues.

Appendix F. Additional Sensitivity Analysis for New and Maintenance
MR Experience
We conducted additional sensitivity analyses to examine whether the experience in new development
MRs differs from experience in maintenance MRs, in terms of productivity benefits. We coded two
new variables: New MRs Experience and Maintenance MRs Experience. New MRs Experience refers to the
cumulative number of new development MRs that each individual has completed prior to the start
of the current MR. Maintenance MRs Experience refers to the cumulative number of maintenance MRs
that each individual has completed prior to the start of the current MR.
We included these two additional experience variables in the analyses for individual and group
MRs. We did not include the two variables at the organizational unit level of analysis due to the
significant increase in VIFs and Collinearity Indices caused by the high correlation between these two
variables at this level of analysis. Tables EC.9 and EC.10 show the results of the new models at the
individual and group levels of analyses, and how they compare with the original results that do not
include these two additional experience variables.
At the individual level of analysis, we found that including these two additional experience vari-
ables did not change our results. We note that both new and maintenance MRs experience significantly



Boh, Slaughter, and Espinosa: Learning from Experience in Software Development
ec10 pp. ec1–ec10; suppl. to Management Sci. 53(8) 1315–1331, © 2007 INFORMS

Table EC.9 Including New Experience Variables for Individual MRs

Variables Original model New model

Intercept −1�768∗∗∗ �0�019� −1�826∗∗∗ �0�019�
Ln size (�1) 0�050∗∗∗ �0�000� 0�050∗∗∗ �0�000�
Ln File Complexity (�2) 0�068∗∗∗ �0�001� 0�068∗∗∗ �0�001�
New Development (�3) −0�273∗∗∗ �0�002� −0�272∗∗∗ �0�002�
Priority (�4) 0�092∗∗∗ �0�001� 0�092∗∗∗ �0�001�

Start Month (�5) −0�001∗∗∗ �0�000� 0�000∗∗ �0�000�
Ln Individual Same-System Experience (�6) −0�033∗∗∗ �0�001� −0�032∗∗∗ �0�001�
Ln Individual Related-Systems Experience (�7) −0�026∗∗∗ �0�001� −0�024∗∗∗ �0�001�
Ln Individual Unrelated-Systems Experience (�8) −0�009∗∗∗ �0�001� −0�010∗∗∗ �0�001�
Ln Individual Experience Working with Other dev (�9) −0�013∗∗∗ �0�001� −0�015∗∗∗ �0�001�
Ln Individual New MRs Experience −0�005∗∗∗ �0�001�
Ln Individual Maintenance MRs Experience −0�003∗∗∗ �0�001�

Deviance (−2 log likelihood) 685,662 685,395
Within-individual variance 0.5165 0.5162
Deviance difference (	dev) 267
Proportion of within-individual variance explained (%) 53.45 53.48

Table EC.10 Including New Experience Variables for Group MRs

Variables Original model New model

Intercept −1�761∗∗∗ �0�039� −1�737∗∗∗ �0�040�
Ln Size (�1) 0�034∗∗∗ �0�001� 0�034∗∗∗ �0�001�
Ln File Complexity (�2) 0�446∗∗∗ �0�003� 0�446∗∗∗ �0�003�
Ln Number of Developers in Group MR (�3) 1�119∗∗∗ �0�013� 1�117∗∗∗ �0�013�
New Development (�4) 0�106∗∗∗ �0�007� 0�110∗∗∗ �0�007�
Priority (�5) −0�011∗∗∗ �0�003� −0�012∗∗∗ �0�003�
Start Month (�6) −0�001∗∗∗ �0�000� −0�001∗∗∗ �0�000�

Ln Avg. Group Same-System Experience (�7) −0�024∗∗∗ �0�001� −0�022∗∗∗ �0�001�
Ln Avg. Group Related-Systems Experience (�8) −0�034∗∗∗ �0�001� −0�032∗∗∗ �0�001�
Ln Avg. Group Unrelated-Systems Experience (�9) −0�016∗∗∗ �0�001� −0�015∗∗∗ �0�001�
Ln Avg. Shared Group Experience (�10) −0�027∗∗∗ �0�001� −0�027∗∗∗ �0�001�
Ln Avg. Group New MRs Experience −0�010∗∗∗ �0�002�
Ln Avg. Group Maintenance MRs Experience 0�001 �0�002�

Deviance (−2 log likelihood) 49,802.6 49,781.3
Within-system variance 0.3047 0.3045
Deviance difference (	dev) 21
Proportion of within-system variance explained (%) 77.43 77.45

increased the productivity of individual MRs, in addition to the same-system, related- , and unrelated-
system variables currently included in the model. At the group level, including these two variables
again did not change our results. Only the New MRs Experience variable turned out to be significant
in decreasing the effort per group MR. The results show that our key results remain unchanged even
when we include additional experience variables to differentiate between new and repair MR experi-
ence. In addition, the proportion of additional variance explained was only marginal and the size of
the coefficients for the two new experience variables was much smaller than the size of the coefficients
of the original set of experience variables for both the individual and group levels of analysis. This
suggests that the particular type of MR experience (whether new development or maintenance) is not
as relevant as the total MR experience in the same, related, or unrelated systems.

Reference
Atkins, D., T. Ball, T. Graves, A. Mockus. 2001. Using version control data to evaluate the impact of software tools: A case study

of the version editor. IEEE Trans. Software Engrg. 28(7) 625–637.


